Sistemas de Comunicaciones

Tema 3: Transmisión de Señales

Grado en Ingeniería de Sistemas de Telecomunicación

Departamento de Ingeniería de Comunicaciones Universidad de Málaga

Curso 2012/2013

- 3.1 Señales Paso Banda
- 3.2 Modulaciones Analógicas Lineales
- 3.3 Modulación Analógica Angular: FM
- 3.4 Transmisión Digital

Objetivos

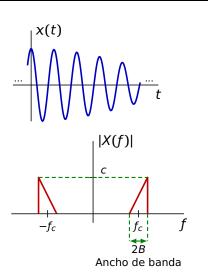
- Representación de señales Paso Banda mediante señales Paso Bajo
- Estudio de Modulaciones Analógicas y evaluación de sus prestaciones
- Conceptos básicos de Modulaciones Digitales

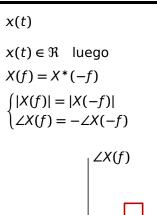
- 3.1 Señales Paso Banda
- 3.2 Modulaciones Analógicas Lineales
- 3.3 Modulación Analógica Angular: FM
- 3.4 Transmisión Digital

3.1 Señales Paso Banda

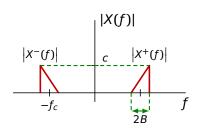
Representación de señales Paso Banda Modulación de señales Procesos Paso Banda

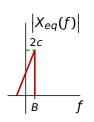
3.1 Señales Paso Banda Señal Paso Banda





Equivalente Paso Bajo





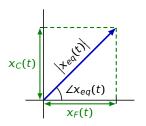
$$X_{eq}(f) = 2X^+(f + f_c)$$

$$X_{eq}(f) \neq X_{eq}^*(-f) \Rightarrow x_{eq}(t) \in \mathbb{C}$$

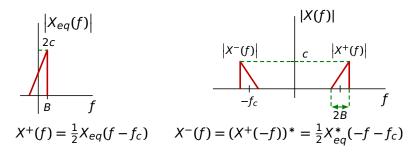
$$x_{eq}(t) = |x_{eq}(t)| e^{j \angle x_{eq}(t)}$$

$$x_{eq}(t) = x_F(t) + jx_C(t)$$

$$X_{eq}(f) = X_F(f) + jX_C(f)$$



3.1 Señales Paso Banda Modulación (frecuencia)



$$X(f) = \frac{1}{2} \left\{ X_{eq}(f - f_c) + X_{eq}^*(-f - f_c) \right\}$$

$$X(f) = \frac{1}{2} \left\{ X_F(f - f_c) + jX_C(f - f_c) + X_F(f + f_c) - jX_C(f + f_c) \right\}$$

3.1 Señales Paso Banda Modulación (tiempo)

$$X(f) = \frac{1}{2} X_{eq}(f - f_c) + \frac{1}{2} X_{eq}^* (-f - f_c)$$

$$x(t) = \frac{x_{eq}(t)e^{j2\pi f_c t}}{2} + \frac{x_{eq}^*(t)e^{-j2\pi f_c t}}{2} \qquad \qquad x^*(t) \stackrel{\mathcal{F}}{\Longleftrightarrow} X^*(-f)$$

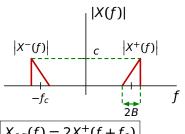
$$x(t) = \Re \left\{ x_{eq}(t)e^{j2\pi f_c t} \right\}$$

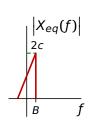
•
$$x(t) = \Re\left\{\left|x_{eq}(t)\right| e^{j\angle x_{eq}(t)} e^{j2\pi f_c t}\right\}$$
$$x(t) = \left|x_{eq}(t)\right| \cos(2\pi f_c t + \angle x_{eq}(t))$$

•
$$x(t) = \Re \{ [x_F(t) + jx_C(t)] [\cos(2\pi f_C t) + j \sin(2\pi f_C t)] \}$$

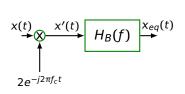
 $x(t) = x_F(t) \cos(2\pi f_C t) - x_C(t) \sin(2\pi f_C t)$

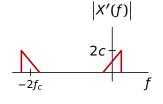
Demodulacion (frecuencia)



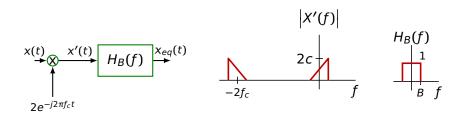


$$X_{eq}(f) = 2X^+(f + f_c)$$





3.1 Señales Paso Banda Demodulación (tiempo)



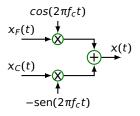
$$x_{eq}(t) = [x(t) \ 2 \ e^{-j2\pi f_C t}] * h_B(t)$$

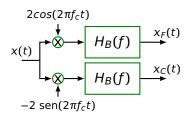
$$x_{eq}(t) = x_F(t) + jx_C(t) = [x(t) \ 2 \ (\cos(2\pi f_C t) - j\sin(2\pi f_C t))] * h_B(t)$$

$$x_F(t) = x(t) 2 \cos(2\pi f_C t) * h_B(t)$$

$$x_C(t) = x(t) \cdot -2 \operatorname{sen}(2\pi f_C t) * h_B(t)$$

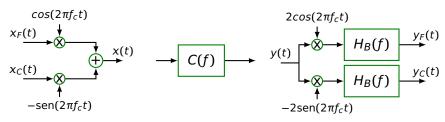
Modulación - Demodulación





x(t) paso banda de 2B de ancho de banda porta 2 señales paso bajo $x_F(t)$ y $x_C(t)$

3.1 Señales Paso Banda Modulación - Canal - Demodulación

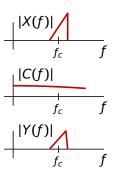


Sistema equivalente paso bajo

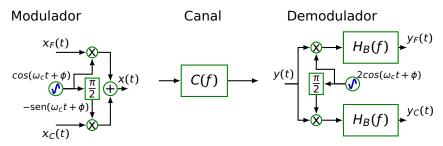
$$x_{eq}(t) \longrightarrow C_{eq}(f) \longrightarrow y_{eq}(t)$$

$$x_{F}(t) + jx_{C}(t) \longrightarrow y_{F}(t) + jy_{C}(t)$$

$$c_{eq}(t) \in \mathbb{C}$$



3.1 Señales Paso Banda Modulación - Canal - Demodulación (más realista)



Mismas expresiones pero incluyendo ϕ

$$x(t) = \Re \left\{ x_{eq}(t)e^{j(2\pi f_c t + \phi)} \right\}$$
 ϕ fase arbitraria

$$x(t) = x_F(t)\cos(2\pi f_C t + \phi) - x_C(t)\sin(2\pi f_C t + \phi)$$

$$y_{eq}(t) = y_F(t) + jy_C(t) = [y(t) \ 2 \ e^{-j(2\pi f_C t + \phi)}] * h_B(t)$$

3.1 Señales Paso Banda Lecturas y ejercicios recomendados

Ejercicio Relación 3: 3.1

3.1 Señales Paso Banda Proceso Paso Banda

$$X_F(t) \longrightarrow X_F(t) \cos(2t+t)$$

$$Cos(\omega_c t + \phi) \longrightarrow \overline{\frac{\pi}{2}} \longrightarrow X_F(t), X_C(t) \text{ proc}$$

$$X_F(t) = \overline{X_C(t)} = 0$$

$$A = S \text{ una vble. al}$$

$$X(t) = X_F(t)\cos(2\pi f_C t + \Phi) - X_C(t)\sin(2\pi f_C t + \Phi)$$

$$X_C(t) = X_F(t)\cos(2\pi f_C t + \Phi) - X_C(t)\sin(2\pi f_C t + \Phi)$$

$$X_C(t) = X_F(t)\cos(2\pi f_C t + \Phi) - X_C(t)\sin(2\pi f_C t + \Phi)$$

 Φ es una vble. aleatoria uniforme en $[-\pi, \pi]$

⇒

X(f) es un proceso estacionario

$$S_X(f) = \frac{1}{4} \left\{ S_{X_F}(f - f_C) + S_{X_C}(f - f_C) + S_{X_F}(f + f_C) + S_{X_C}(f + f_C) \right\}$$

$$S_X(f) = \frac{1}{4} \left\{ S_{X_{eq}}(f - f_c) + S_{X_{eq}}(f + f_c) \right\} \qquad P_X = \frac{P_{X_F} + P_X}{2}$$

Proceso Paso Banda (Demostración)

$$cos(\omega_c t + \phi)$$

$$-sen(\omega_c t + \phi)$$

$$\chi_C(t)$$

$$\times X_F(t)$$

$$\times X_C(t)$$

$$\times X_C(t)$$

$$X(t) = X_F(t) \cos(2\pi f_C t + \Phi) - X_C(t) \sin(2\pi f_C t + \Phi)$$

 $X_F(t), X_C(t)$ estacionarios, indep. y medias nulas

 Φ es una vble. aleatoria uniforme en $[-\pi, \pi]$

 $\Rightarrow X(f)$ es un proceso estacionario

Demostración

$$R_{X}(\tau) = E \{X(t)X(t-\tau)\}$$

$$R_{X}(\tau) = E \{X_{F}(t)X_{F}(t-\tau)\cos(2\pi f_{c}t+\Phi)\cos(2\pi f_{c}(t-\tau)+\Phi)\} +$$

$$+E \{X_{F}(t)X_{C}(t-\tau)...\} + E \{X_{C}(t)X_{F}(t-\tau)...\} + E \{X_{C}(t)X_{C}(t-\tau)...\}$$

$$R_{X}(\tau) = \frac{1}{2}R_{X_{F}}(\tau)\cos(2\pi f_{c}\tau) + \frac{1}{2}R_{X_{C}}(\tau)\cos(2\pi f_{c}\tau)$$

$$S_X(f) = \frac{1}{4} \left\{ S_{X_F}(f - f_C) + S_{X_C}(f - f_C) + S_{X_F}(f + f_C) + S_{X_C}(f + f_C) \right\}$$

Proceso Paso Banda (Demostración)

$$S_X(f) = \frac{1}{4} \left\{ S_{X_F}(f - f_c) + S_{X_C}(f - f_c) + S_{X_F}(f + f_c) + S_{X_C}(f + f_c) \right\}$$

$$P_X = \frac{P_{X_F} + P_{X_C}}{2}$$

Por otro lado, $X_{eq}(t) = X_F(t) + jX_C(t)$

 $X_F(t)$, $X_C(t)$ estacionarios independientes y medias nulas

$$\Longrightarrow$$

$$R_{X_{eq}}(\tau) = R_{X_F}(\tau) + R_{X_C}(\tau)$$
 y $S_{X_{eq}}(f) = S_{X_F}(f) + S_{X_C}(f)$

$$P_{X_{eq}} = P_{X_F} + P_{X_C}$$

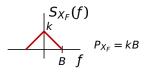
$$S_X(f) = \frac{1}{4} \left\{ S_{X_{eq}}(f - f_c) + S_{X_{eq}}(f + f_c) \right\} \qquad P_X = \frac{P_{X_{eq}}}{2}$$

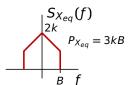
Ejemplo proceso paso banda

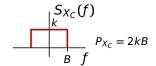
$$S_{X_{eq}}(f) = S_{X_F}(f) + S_{X_C}(f)$$

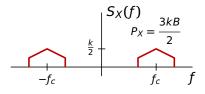
$$S_X(f) = \frac{1}{4} \left\{ S_{X_{eq}}(f - f_c) + S_{X_{eq}}(f + f_c) \right\}$$

$$S_X(f) = \frac{1}{4} \left\{ S_{X_F}(f - f_c) + S_{X_C}(f - f_c) + S_{X_F}(f + f_c) + S_{X_C}(f + f_c) \right\}$$









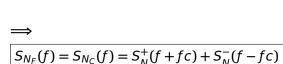
3.1 Señales Paso Banda Ruido Paso Banda

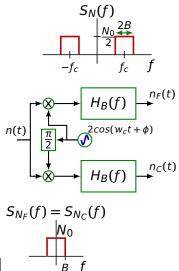
$$S_{W}(f) = \frac{N_{0}}{2} \qquad H(f) \qquad H(f) \qquad 1 \stackrel{2B}{\longleftarrow} \qquad f_{c} \qquad f$$

W(t) Ruido Blanco y gaussiano (AWGN)

N(t) Ruido Paso Banda gaussianoAmbos estacionarios y ergódicos

$$S_N(f) = S_W(f) |H(f)|^2$$





3.1 Señales Paso Banda Ruido Paso Banda (Demostración)

$$N(t)$$
 Ruido Paso Banda gaussiano
$$\Rightarrow S_{N_F}(f) = S_{N_C}(f) = S_N^+(f+fc) + S_N^-(f-fc)$$

$$Demostración:$$
 $n(t)$

$$\uparrow I_B(f)$$

$$\begin{split} N_F(t) &= N(t) \ 2 \ \cos(2\pi f_C t + \Phi) * h_B(t) = N_F'(t) * h_B(t) \\ N_C(t) &= N(t) \cdot -2 \mathrm{sen}(2\pi f_C t + \Phi) * h_B(t) = N_C'(t) * h_B(t) \\ R_{N_F'}(\tau) &= R_{N_C'}(\tau) = 2R_N(\tau) \cos(2\pi f_C \tau) \\ S_{N_E'}(f) &= S_{N_C'}(f) = S_N(f - f_C) + S_N(f + f_C) \end{split}$$

Ruido Paso Banda (Demostración)

$$S_{N_{F}'}(f) = S_{N_{C}'}(f) = S_{N}(f - f_{c}) + S_{N}(f + f_{c})$$

$$S_{N}(f)$$

$$S_{N}(f)$$

$$S_{N}(f)$$

$$S_{N}(f)$$

$$S_{N}(f)$$

$$S_{N}(f)$$

$$S_{N}(f)$$

$$S_{N}(f)$$

$$S_{N}(f)$$

$$S_{N}(f + f_{c})$$

$$S_{N}(f + f_{c})$$

$$S_{N}(f + f_{c})$$

$$S_{N}(f - f_{$$

$$|S_{N_F}(f) = S_{N'_F}(f) |H_B(f)|^2 = S_N^+(f+fc) + S_N^-(f-fc) = S_{N_C}(f)$$

$$P_N = P_{N_F} = P_{N_C} = 2N_0B$$

3.1 Señales Paso Banda Conclusión

Señal Paso Banda determinista (estudio de señal)

$$x(t) = x_F(t)\cos(2\pi f_c t + \phi) - x_C(t)\sin(2\pi f_c t + \phi)$$

$$X(f) = \frac{1}{2} \left\{ X_F(f - f_C) + j X_C(f - f_C) + X_F(f + f_C) - j X_C(f + f_C) \right\} \leftarrow (\phi = 0)$$

$$S_X(f) = \frac{1}{4} \left\{ S_{X_F}(f - f_C) + S_{X_C}(f - f_C) + S_{X_F}(f + f_C) + S_{X_C}(f + f_C) \right\}$$

Señal Paso Banda aleatoria (estudio general de señal o ruido)

$$X(t) = X_F(t)\cos(2\pi f_c t + \Phi) - X_C(t)\sin(2\pi f_c t + \Phi)$$

$$R_X(\tau) = \frac{1}{2} R_{X_F}(\tau) cos(2\pi f_c \tau) + \frac{1}{2} R_{X_C}(\tau) cos(2\pi f_c \tau)$$

$$S_X(f) = \frac{1}{4} \left\{ S_{X_F}(f - f_C) + S_{X_C}(f - f_C) + S_{X_F}(f + f_C) + S_{X_C}(f + f_C) \right\}$$

$$S_{N_F}(f) = S_{N_C}(f) = S_N^+(f + fc) + S_N^-(f - fc)$$
 (para el ruido)

3.1 Señales Paso Banda Lecturas y ejercicios recomendados

- Capítulo 3. [Haykin3] Continuous-Wave Modulation secciones 3.1
 3.4 (hasta Coherent Detection) (pg. 121-136)
- Capítulo 5. [Haykin3] Noise in CW Modulation Systems secciones 5.2-5.3 (pg. 314-319)

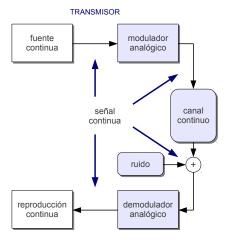
0

- Capítulo 2. [Haykin4] Continuous-Wave Modulation secciones 2.1-2.3 (hasta Coherent Detection) (pg. 88-95)
- Capítulo 2. [Haykin4] Continuous-Wave Modulation secciones 2.10-2.11 (pg. 130-132)

3.2 Modulaciones Analógicas Lineales

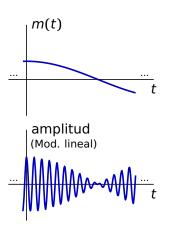
Introducción
Modulación DBL
Modulación AM
Modulación MQ
El problema de la sincronización
Demodulador incoherente de AM
Otras modulaciones lineales
Receptor Superheterodino

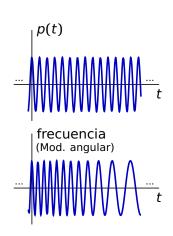
3.2 Modulaciones Analógicas Lineales Introducción: Sist. Com. Analógico



3.2 Modulaciones Analógicas Lineales Introducción

- m(t), señal de información o moduladora
- m(t) varía la amplitud/frecuencia de una portadora p(t)





3.2 Modulaciones Analógicas Lineales Introducción

$$x(t) = Ax_F(t)\cos(2\pi f_c t + \phi) - Ax_C(t)\sin(2\pi f_c t + \phi)$$

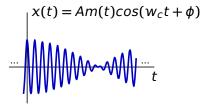
Ejemplos modulaciones lineales

DBL:
$$x_F(t) = m(t)$$
 $x_C(t) = 0$

AM:
$$x_F(t) = 1 + K_a m(t)$$
 $x_C(t) = 0$

MQ:
$$x_F(t) = m_1(t)$$
 $x_C(t) = m_2(t)$

DBL:



3.2 Modulaciones Analógicas Lineales

Señal de información

Señal aleatoria M(t) de ancho banda B y media nula $(\overline{M(t)} = 0)$

$$P_M = \int S_M(f)df$$

Otra opción: Sñ determinista $m(t)$
 $M(f), S_m(f)$ $P_m = \int S_m(f)df$

Canal

Ideal
$$C(f) = c$$

Ruido: W(t) proceso estacionario blanco gaussiano y aditivo (AWGN)

$$S_W(f) = \frac{N_0}{2} \quad \left(\frac{W}{Hz}\right)$$

3.2 Modulaciones Analógicas Lineales Análisis de prestaciones de modulaciones

SNR en recepción

$$\left(\frac{S}{N}\right) = \frac{\text{Potencia Señal}}{\text{Potencia Ruido}} \text{ (veces)} \quad 10 \log \left(\frac{S}{N}\right) \text{ (dB)}$$

Unidades de potencia: W, dBW, dBm, dB μ

 $\mathsf{dBW} = 10 \log P(W)$

 $dBm = 10 \log P(mW)$

 $dB\mu = 10 \log P(\mu W)$

Atenuación del canal (dB): $\alpha = -20 \log c$

 $P_R(dBW) = P_T(dBW) - \alpha$

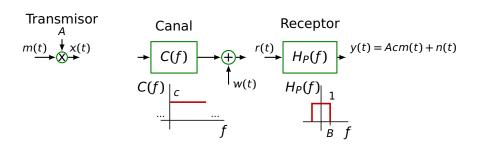
Eficiencia espectral

$$\epsilon = \frac{B}{R_T}$$

B : Ancho de banda señal información

 B_T : Ancho de banda modulación

3.2 Modulaciones Analógicas Lineales Prestaciones sin modular



$$P_R = \{\text{solo señal}\} = A^2 c^2 P_M$$

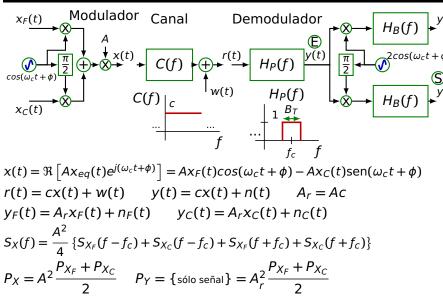
 $P_N = \int_{-B}^{B} S_W(f) df = \int_{-B}^{B} \frac{N_0}{2} df = N_0 B$

$$\left(\frac{S}{N}\right)_{RR} = \frac{P_R}{N_0 B}$$

Prestaciones de referencia

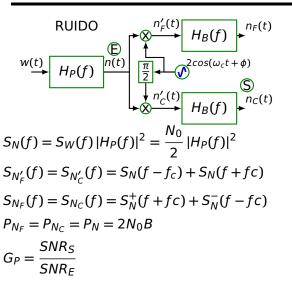
3.2 Modulaciones Analógicas Lineales

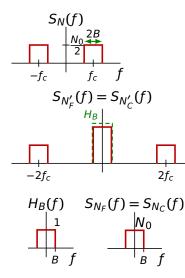
Sistema de Comunicaciones Analógico Lineal (I)



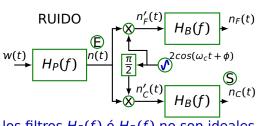
3.2 Modulaciones Analógicas Lineales

Sistema de Comunicaciones Analógico Lineal (II)



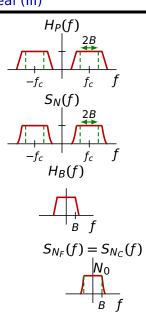


3.2 Modulaciones Analógicas Lineales Sistema de Comunicaciones Analógico Lineal (III)



Si los filtros $H_P(f)$ ó $H_B(f)$ no son ideales

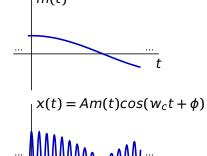
Si los filtros
$$H_P(f)$$
 ó $H_B(f)$ no son ideales
 $S_N(f) = S_W(f) |H_P(f)|^2$
 $S_{N'_F}(f) = S_{N'_C}(f) = S_N(f - f_c) + S_N(f + f_c)$
 $S_{N_F}(f) = S_{N_C}(f) =$
 $= |H_B(f)|^2 \{S_N(f - f_c) + S_N(f + f_c)\}$
 $P_{N_F} = \int S_N(f) df$

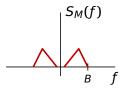


 $P_{N_F} = P_{N_C} = \int S_{N_F}(f) df$

3.2 Modulaciones Analógicas Lineales Modulación DBL

$$x_F(t) = m(t) \qquad x_C(t) = 0$$

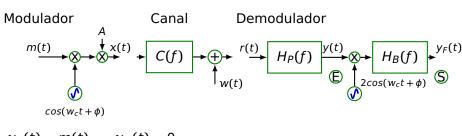






$$S_X(f) = \frac{A^2}{4} \left\{ S_M(f - fc) + S_M(f + fc) \right\} \qquad P_X = \frac{A^2}{2} P_M$$

3.2 Modulaciones Analógicas Lineales Modulación DBL: Esquema



$$x_{F}(t) = m(t) x_{C}(t) = 0$$

$$x(t) = A m(t) \cos(\omega_{c}t + \phi) A_{r} = Ac$$

$$r(t) = A_{r}m(t)\cos(\omega_{c}t + \phi) + w(t)$$

$$y(t) = A_{r}m(t)\cos(\omega_{c}t + \phi) + n(t)$$

$$v_{F}(t) = A_{r}m(t) + n_{F}(t)$$

3.2 Modulaciones Analógicas Lineales Modulación DBL: SNR

$$r(t) \longrightarrow H_{P}(f) \longrightarrow H_{B}(f) \longrightarrow H_{B}(f) \longrightarrow F_{F}(t) \longrightarrow F_{C}(f) \longrightarrow F_$$

Grado Ing. Sist. Telecomunicación

3.2 Modulaciones Analógicas Lineales Modulación AM

$$AM \equiv DBL + portadora$$

$$x(t) = A K_a m(t)cos(\omega_c t + \phi) + Acos(\omega_c t + \phi)$$
$$= A(1 + K_a m(t))cos(\omega_c t + \phi)$$
$$x_F(t) = 1 + K_a m(t) \qquad x_C(t) = 0$$

 K_{α} : Sensibilidad de amplitud

 μ : Índice de modulación $\mu = K_a \max |m(t)|$

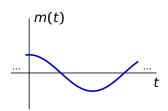
Asumiremos que max
$$|m(t)| = 1 \implies \mu = K_a$$

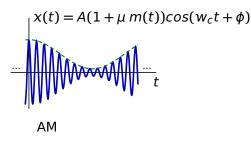
Para que no haya sobremodulación, ha de cumplirse:

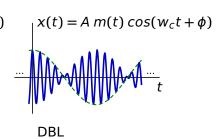
$$0 < \mu \le 1 \Rightarrow A(1 + \mu m(t)) \ge 0 \Rightarrow$$
 No hay cruces por cero.

La información m(t) viaja en la envolvente x(t)

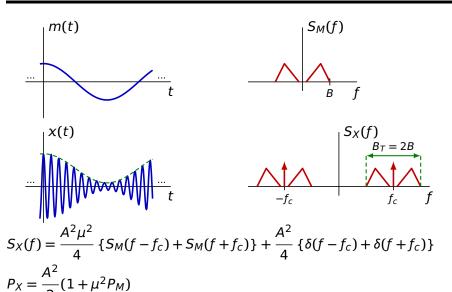
3.2 Modulaciones Analógicas Lineales Modulación AM







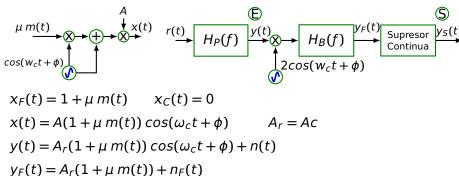
3.2 Modulaciones Analógicas Lineales Modulación AM



3.2 Modulaciones Analógicas Lineales Modulación AM: Esquema

Modulador

Demodulador



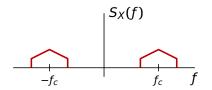
 $v_S(t) = A_r \mu m(t) + n_F(t)$

3.2 Modulaciones Analógicas Lineales Modulación AM: SNR

$$F(t) = \{F(t)\} \quad \text{Supresor Continua} \quad \text{Su$$

3.2 Modulaciones Analógicas Lineales Modulación MQ

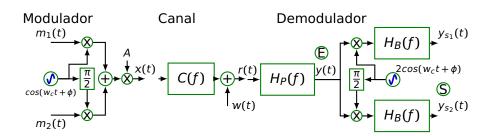
$$x_F(t) = m_1(t)$$
 $x_C(t) = m_2(t)$ $M_1(t)$ y $M_2(t)$ independientes $S_{M_1}(f)$



$$S_X(f) = \frac{A^2}{4} \left\{ S_{M_1}(f - f_c) + S_{M_2}(f - f_c) + S_{M_1}(f + f_c) + S_{M_2}(f + f_c) \right\}$$

$$P_X = A^2 \frac{P_{M_1} + P_{M_2}}{2}$$

3.2 Modulaciones Analógicas Lineales Modulación MQ: Esquema



$$x_F(t) = m_1(t)$$
 $x_C(t) = m_2(t)$

$$x(t) = Am_1(t)cos(\omega_c t) - Am_2(t)sen(\omega_c t)$$

$$y(t) = A_r m_1(t) cos(\omega_c t) - A_r m_2(t) sen(\omega_c t) + n(t)$$

$$y_{S_1}(t) = A_r m_1(t) + n_F(t)$$

$$y_{S_2}(t) = A_r m_2(t) + n_C(t)$$

3.2 Modulaciones Analógicas Lineales Modulación MQ: SNR

$$F(t) = H_{P}(f) = H_{B}(f) = H_{B}(f)$$

$$F(t) = H_{P}(f) = H_{P}(f)$$

$$F(t) = H_{P}(f) = H_{B}(f)$$

$$F(t) = H_{B}(f) = H_{B}(f)$$

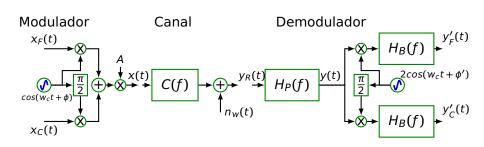
$$F(t) = H_{B$$

3.2 Modulaciones Analógicas Lineales Lecturas y ejercicios recomendados

- Capítulo 3. [Haykin3] Continuous-Wave Modulation sección 3.4 (Desde Coherent Detection) (pg. 136 - 140)
- Capítulo 5. [Haykin3] Noise in CW Modulation Systems sección
 5.5 (Noise in AM Receivers) (pg. 322-325)
- Capítulo 2. [Haykin4] Continuous-Wave Modulation sección 2.3 (Desde Coherent Detection hasta Television Signals) (pg. 95 - 101)
- Capítulo 2. [Haykin4] Continuous-Wave Modulation sección 2.12 (Noise in AM Receivers using Envelope Detection) (pg. 135-137)

• Ejercicios Relación 3: 3.2, 3.7, 3.10, 3.11

3.2 Modulaciones Analógicas Lineales Error de fase en recepción



$$y_{eq}(t) = y_F(t) + jy_C(t) = [y(t) \ 2 \ e^{-j(w_C t + \phi)}] * h_B(t)$$
$$y'_{eq}(t) = [y(t) \ 2 e^{-j(w_C t + \phi')}] * h_B(t) = [y(t) \ 2 e^{-j(w_C t + \phi)} e^{-j(\phi' - \phi)}] * h_B(t)$$

$$y'_{eq}(t) = y_{eq}(t)e^{-j\theta}$$
 $\theta = \phi' - \phi$

$$y_F'(t) = \Re(y_{eq}'(t)) = y_F(t)\cos\theta + y_C(t)\sin\theta \neq y_F(t)$$

$$y'_C(t) = \Im(y'_{eq}(t)) = y_C(t)\cos\theta - y_F(t)\sin\theta \neq y_C(t)$$

3.2 Modulaciones Analógicas Lineales Error de fase en recepción

DBL/AM

$$y'_{F}(t) = y_{F}(t)\cos\theta$$
 $\left(\frac{S}{N}\right)_{\substack{error \\ fase}} = \left(\frac{S}{N}\right)_{i}\cos^{2}\theta$

MQ

$$y'_{S_1}(t) = y_{S_1}(t)\cos\theta + y_{S_2}(t)\sin\theta$$

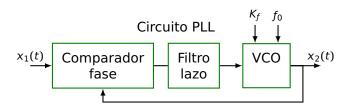
 $y'_{S_2}(t) = y_{S_2}(t)\cos\theta - y_{S_1}(t)\sin\theta$

$$\left(\frac{S}{N+I}\right)_{\substack{\text{error}\\\text{fase}}} = \frac{S\cos^2\theta}{N+S\sin^2\theta}$$

Error de frecuencia ≡ error de fase variante en el tiempo

3.2 Modulaciones Analógicas Lineales Tipos de demoduladores

- <u>Demoduladores coherentes.</u>
 Requieren circuitos de sincronización (PLL, FLL)
- <u>Demoduladores incoherentes.</u>
 No requieren circuitos de sincronización.
 Sólo posible para algunas modulaciones (AM)

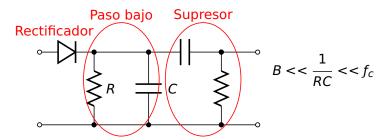


 K_f : Sensibilidad de frecuencia (Hz/V) f_0 : frecuencia nominal

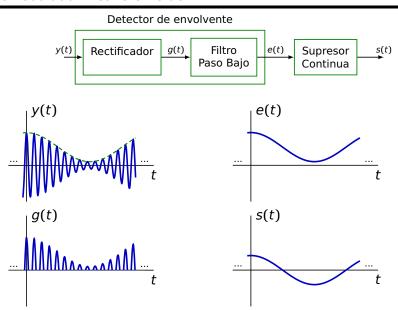
Los tonos $x_1(t)$ y $x_2(t)$ se sincronizan en fase

3.2 Modulaciones Analógicas Lineales Demodulador incoherente de AM

Detector de envolvente



3.2 Modulaciones Analógicas Lineales Demodulador incoherente de AM



3.2 Modulaciones Analógicas Lineales Demodulador incoherente de AM: SNR

$$y(t) = A_r(1 + \mu m(t))cos(2\pi f ct + \phi) + n(t)$$

$$y(t) = |y_{eq}(t)| cos(2\pi f ct + \angle y_{eq}(t) + \phi) \qquad \text{(rep. paso banda)}$$

$$y_{eq}(t) = y_F(t) + jy_C(t) = A_r(1 + \mu m(t)) + n_F(t) + jn_C(t)$$

$$e(t) = \{ si \ 1 + \mu m(t) > 0 \} = |y_{eq}(t)| \qquad |y_{eq}(t)|$$

$$e(t) = \sqrt{(A_r(1 + \mu m(t)) + n_F(t))^2 + n_C(t)^2}$$

$$A_r(1 + \mu m(t)) = A_r(t)$$

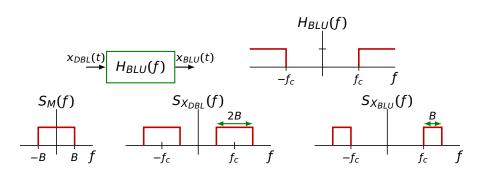
$$\left(\frac{S}{N}\right)_{S_{incoh}} = \left\{si\left(\frac{S}{N}\right)_{E} = \frac{A_{r}^{2}(1 + \mu^{2}P_{M})}{4N_{0}B} > Umbral\right\} = \left(\frac{S}{N}\right)_{S_{coher}}$$

 $e(t) = \{ si A_r >> n_E(t), n_C(t) \} \approx A_r(1 + \mu m(t)) + n_E(t) \}$

 $Umbral_{AM} = 13dB$

3.2 Modulaciones Analógicas Lineales

Otras modulaciones: Banda Lateral Única (BLU)

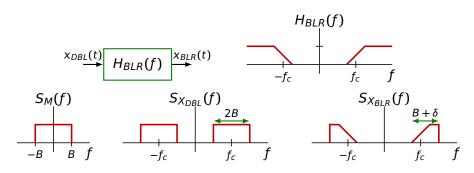


- $B_T = B$ Mitad que DBL
- Filtro abrupto. Realizable si m(t) bajo contenido baja frecuencia
- Sensible a fallos de sincronización

• Usada en telefonía
$$\left(\frac{S}{N}\right)_{SRUJ} = \left(\frac{S}{N}\right)_{RR} = \frac{P_R}{N_0 B}$$

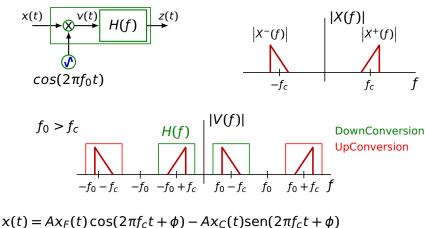
3.2 Modulaciones Analógicas Lineales

Otras modulaciones: Banda Lateral Residual (BLR)



- $B_T = B + \delta$
- Filtro menos abrupto. Rx más compleja que BLU.
- Sensible a fallos de sincronización
- Usada en Televisión Analógica

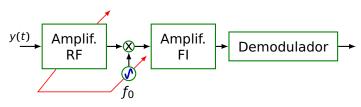
3.2 Modulaciones Analógicas Lineales Mezclador



$$z(t) = Ax_F(t)\cos(2\pi(f_0 - f_c)t + \phi) + Ax_C(t)\sin(2\pi(f_0 - f_c)t + \phi)$$

$$z(t) = Ax_{E}(t)\cos(2\pi(f_{0} + f_{c})t + \phi) - Ax_{C}(t)\sin(2\pi(f_{0} + f_{c})t + \phi)$$

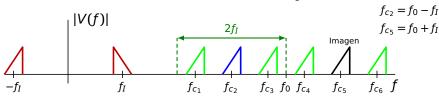
3.2 Modulaciones Analógicas Lineales Receptor Superheterodino



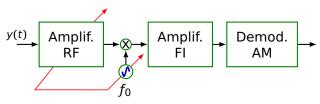
DownConversion.

 f_c : Frecuencia canal f_I : Frecuencia intermedia $f_0 = f_c + f_I$: Frecuencia oscilador local (variable)

 $B_{RF} < 2f_I$ para evitar el canal imagen $(f_{Imagen} = f_c + 2f_I)$



3.2 Modulaciones Analógicas Lineales Receptor Superheterodino de AM comercial



AM comercial. Banda: 535-1605 kHz

$$f_c = 540 - 1600kHz$$
 con $10kHz$ de separación

$$B = 5kHz$$
 $f_I = 455kHz$

$$f_0 = f_c + f_I$$

3.2 Modulaciones Analógicas Lineales Lecturas y ejercicios recomendados

- Capítulo 3. [Haykin3] Continuous-Wave Modulation sección 3.10 -3.11 (Frequency Modulation) (pg. 154 - 175)
- Capítulo 5. [Haykin3] Noise in CW Modulation Systems sección 5.6 (Noise in FM Receivers) (pg. 326-334)
- Capítulo 2. [Haykin4] Continuous-Wave Modulation sección 2.6 -2.7 (Frequency Modulation) (pg. 107 - 121)
- Capítulo 2. [Haykin4] Continuous-Wave Modulation sección 2.13 (Noise in FM Receivers) (pg. 142-149)

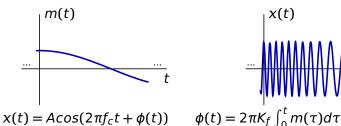
Ejercicios Relación 3: 3.12

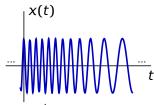
Tema 3: Transmisión de Señales

3.3 Modulación Analógica Angular: FM

Ecuaciones de FM
Espectro de un tono modulado
Modulador de FM
Demodulador de FM
FM estereo

3.3 Modulación Analógica Angular: FM Ecuaciones de FM





$$x(t) = A\cos(2\pi f_c t + \phi(t))$$

$$\phi(t) = 2\pi K_f \int_0^t m(\tau) d\tau$$

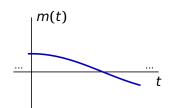
$$f_i(t) = \left\{ \begin{array}{l} frec. \\ instan. \end{array} \right\} = \frac{1}{2\pi} \frac{d(2\pi f_c t + \phi(t))}{dt} = f_c + K_f m(t)$$

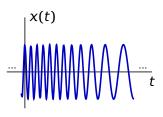
Sensibilidad de frecuencia

 $f_{\Delta} = K_f \max |m(t)|$ Máxima desviación de frecuencia

$$\beta = \frac{K_f \max |m(t)|}{B} = \frac{f_{\Delta}}{B}$$
 Máxima desviación de fase

3.3 Modulación Analógica Angular: FM Ecuaciones de FM





$$x(t) = A\cos(2\pi f_c t + \phi(t)) = \Re\left[A e^{j(2\pi f_c t + \phi(t))}\right]$$

$$x(t) = \Re\left[A e^{j\phi(t)} e^{j2\pi f_c t}\right] = \{\text{recordar}\} = \Re\left[A x_{eq}(t) e^{j2\pi f_c t}\right]$$

$$x_{eq}(t) = e^{j\phi(t)} = e^{j2\pi K_f} \int_0^t m(\tau) d\tau$$

Modulación de envolvente constante

3.3 Modulación Analógica Angular: FM Espectro de un tono modulado

$$m(t) = \cos(2\pi f_0 t) \qquad \beta = \frac{K_f \max|m(t)|}{B} = \frac{f_\Delta}{B}$$

$$x_{eq}(t) = e^{j\phi(t)} \qquad \beta_{tono} = \frac{f_\Delta}{f_0}$$

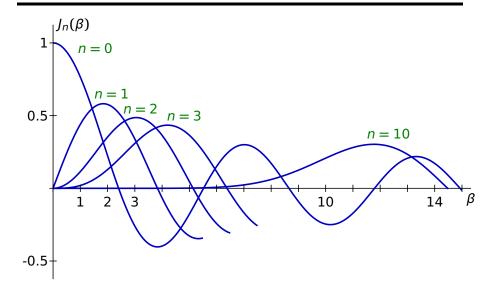
$$\phi(t) = 2\pi K_f \int_0^t \cos(2\pi f_0 \tau) d\tau = \frac{K_f}{f_0} \operatorname{sen}(2\pi f_0 t) = \beta \operatorname{sen}(2\pi f_0 t)$$

$$x_{eq}(t) = e^{j\beta \operatorname{sen}(2\pi f_0 t)} = \{\operatorname{periodica}\} = \sum_{n=-\infty}^{\infty} C_n e^{j2\pi f_0 n t}$$

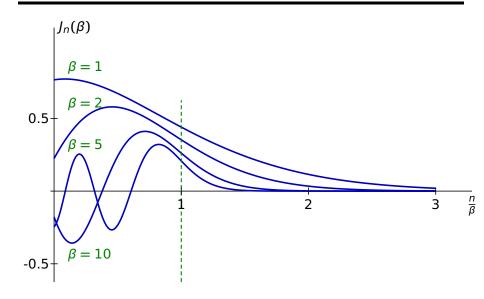
$$C_n = \frac{1}{T_0} \int_{(T_0)} x_{eq}(t) e^{-jn2\pi f_0 t} dt = J_n(\beta)$$

$$x_{eq}(t) = \sum_{n=-\infty}^{\infty} J_n(\beta) e^{j2\pi f_0 n t}$$

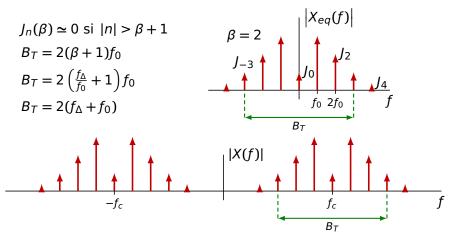
3.3 Modulación Analógica Angular: FM Espectro tono modulado: Funciones de Bessel



3.3 Modulación Analógica Angular: FM Espectro tono modulado: Funciones de Bessel



3.3 Modulación Analógica Angular: FM Espectro de un tono modulado

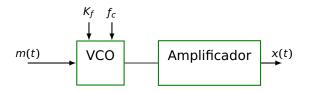


Señal genérica banda B

$$B_T = 2(\beta + 1)B = 2(f_{\Delta} + B)$$

Regla de Carson

3.3 Modulación Analógica Angular: FM



$$x(t) = A\cos\left(2\pi f_c t + 2\pi K_f \int_0^t m(\tau)d\tau\right)$$

$$f_i(t) = \frac{1}{2\pi} \frac{d(2\pi f_c t + 2\pi K_f \int_0^t m(\tau) d\tau)}{dt} = f_c + K_f m(t)$$

VCO con:

- Circuito LC basado en Diodo varactor (C variable)
- Circuitos digitales: Direct Digital Synthesizer (DDS)

3.3 Modulación Analógica Angular: FM

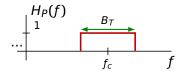
$$y(t) = A_r cos \left(2\pi f_c t + 2\pi K_f \int_0^t m(\tau) d\tau \right)$$

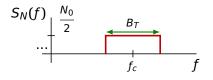
$$y_d(t) = -A_r (f_c + K_f m(t)) \operatorname{sen} \left(2\pi f_c t + 2\pi f_\Delta \int_0^t m(\tau) d\tau \right)$$

$$y_e(t) = A_r \left(f_c + K_f m(t) \right)$$

$$y_i(t) = A_r K_f m(t)$$

3.3 Modulación Analógica Angular: FM Demodulador de EM: Análisis de Ruido





$$y(t) = A_r \cos(2\pi f_c t + \phi(t)) + n(t)$$

$$P_{R} = \frac{A_{r}^{2}}{2} \qquad P_{N} = N_{0}B_{T} = N_{0}2(\beta + 1)B$$

$$\left(\frac{S}{N}\right)_{E} = \frac{P_{R}}{2(\beta + 1)BN_{0}}$$

3.3 Modulación Analógica Angular: FM Demodulador de FM: Análisis de Ruido

$$F(t) \longrightarrow H_P(f) \longrightarrow \frac{1}{2\pi} \frac{d}{dt} \longrightarrow \frac{1}{2\pi}$$

$$y(t) = A_r cos(2\pi f_c t + \phi(t)) + h(t) = |y_{eq}(t)| cos(2\pi f_c t + 2y_{eq}(t))$$

$$y(t) = \left\{ \left(\frac{S}{N} \right)_E > \text{Umbral} \right\} \approx A_r cos \left(2\pi f_c t + \phi(t) + \frac{n_C(t)}{A_r} \right)$$

$$S_{N_C}(f) = S_N^+(f + f_c) + S_N^-(f - f_c) \qquad \text{Umbral}_{FM} = 13dB$$

3.3 Modulación Analógica Angular: FM Demodulador de FM: Análisis de Ruido

$$y_{i}(t) = A_{r}K_{f}m(t) + n_{i}(t)$$

$$n_{i}(t) = \frac{1}{2\pi} \frac{dn_{C}(t)}{dt}$$

$$S_{N_{i}}(f) = S_{N_{C}}(f) \left| H_{\frac{d}{dt}}(f) \right|^{2}$$

$$S_{N_{i}}(f) = N_{0} \left| \frac{1}{2\pi} 2\pi f \right|^{2} = N_{0}f^{2} \quad |f| < \frac{B_{T}}{2}$$

$$y_{s}(t) = A_{r}K_{f}m(t) + n_{s}(t)$$

$$S_{N_{s}}(f) = S_{N_{i}}(f) |H_{B}(f)|^{2}$$

$$S_{N_{s}}(f) = S_{N_{i}}(f) |H_{B}(f)|^{2}$$

3.3 Modulación Analógica Angular: FM Demodulador de FM: Análisis de Ruido

$$y_{s}(t) = A_{r}K_{f}m(t) + n_{s}(t)$$

$$P_{Y_{s}} = A_{r}^{2}K_{f}^{2}P_{M} = 2P_{R}K_{f}^{2}P_{M}$$

$$P_{N_{s}} = 2\int_{0}^{B} S_{N_{s}}(f)df = 2\int_{0}^{B} N_{0}f^{2}df = \frac{2}{3}B^{3}N_{0}$$

$$\left(\frac{S}{N}\right)_{S} = \frac{P_{R}}{N_{0}B}\frac{3K_{f}^{2}P_{M}}{B^{2}} = \frac{P_{R}}{N_{0}B}3\beta^{2}P'_{M}\right) \qquad \beta = \frac{K_{f}\max|m(t)|}{B}$$

$$P'_{M} = \frac{P_{M}}{(\max|m(t)|)^{2}}$$

$$\frac{\left(\frac{S}{N}\right)_{S}}{\left(\frac{S}{N}\right)_{BB}} = 3\beta^{2}P'_{M} \qquad G_{P} = \frac{\left(\frac{S}{N}\right)_{S}}{\left(\frac{S}{N}\right)_{E}} = 6\beta^{2}(\beta+1)P'_{M}$$

$$B_{T} = 2(\beta+1)B \qquad \epsilon = \frac{1}{2(\beta+1)}$$

3.3 Modulación Analógica Angular: FM Esquema FM práctico

$$H_{P_E}(f)$$
 - Mod.FM $\xrightarrow{x(t)}$ $y(t)$ Lim. - Dem. FM $H_{D_E}(f)$

Limitador:

$$A(t)\cos(\omega_c t + \phi(t)) \Rightarrow A\cos(\omega_c t + \phi(t))$$

$$|H_{P_E}(f)|$$
 B f

$$|H_{D_{-}E}(f)|$$

$$|H_{D_{-}E}(f)|$$

$$\text{Mejora} = \frac{\left(\frac{S}{N_{D_E}}\right)_{S}}{\left(\frac{S}{N}\right)_{S}} = \frac{\frac{2}{3}B^{3}N_{0}}{2N_{0}\int_{0}^{B}f^{2}\left|H_{D_E}(f)\right|^{2}df} = \frac{B^{3}}{3\int_{0}^{B}\left|fH_{D_E}(f)\right|^{2}df}$$

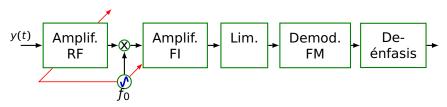
3.3 Modulación Analógica Angular: FM Pre-énfasis en FM comercial

$$H_{P_E}(f) = 1 + j\frac{f}{f_0}$$
 $H_{D_E}(f) = \frac{1}{1 + j\frac{f}{f_0}}$

$$f_0 = \frac{1}{2\pi RC} = 2.1kHz$$

Mejora ≈ 13dB

3.3 Modulación Analógica Angular: FM Receptor Superheterodino de FM comercial



FM comercial. Banda: 88-108 MHz

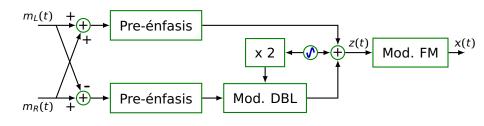
200kHz de separación entre portadoras

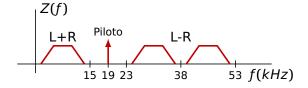
$$f_{\Delta} = 75kHz$$

$$B = 15kHz$$
 $B_T = 2(f_{\Delta} + B) = 180kHz$

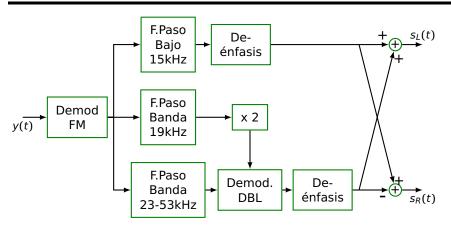
$$f_I = 10.7MHz f_0 = f_c + f_I$$

3.3 Modulación Analógica Angular: FM Transmisor FM estereo

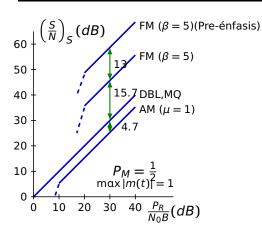




3.3 Modulación Analógica Angular: FM Receptor FM estereo



3.3 Modulación Analógica Angular: FM Comparativa de modulaciones



AM comercial:

B = 5 kHz (Voz)

FM comercial (mono):

B = 15 kHz (Audio)

 $\beta = 5$

Pre-énfasis (13dB+)

Martos Naya, E; Fernández Plazaola, U.; Cañete Corripio, F.J; Luque Nieto, M.A. (2012) Sistemas de Comunicaciones. OCW-Universidad de Málaga, http://ocw.uma.es Bajo licencia Creative Commons Attribution-NonComercial-ShareAlike 3.0 Spain

