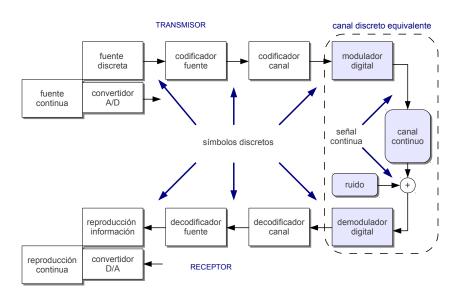
Sistemas de Comunicaciones

Tema 3: Transmisión de Señales

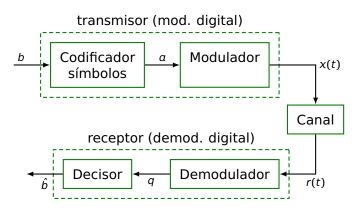
Grado en Ingeniería de Sistemas de Telecomunicación

Departamento de Ingeniería de Comunicaciones Universidad de Málaga

Curso 2012/2013



Tema 3: Transmisión de Señales


3.4 Transmisión Digital

Modelo sistema Señales PAM Señales digitales paso banda Revisión sistema de comunicaciones digitales

3.4 Transmisión Digital sistema de comunicaciones digitales

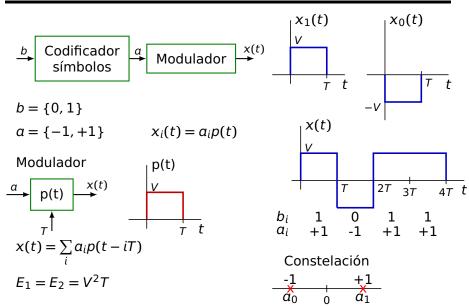
3.4 Transmisión Digital Modelo sistema

- *b*: **bits** (o símbolos) $\{b_i\}$ con i = 0, 1, ..., M 1
- $M = 2^k$: tamaño de la modulación digital con $k \in \mathbb{N}$
- a: símbolos de la constelación transmitida (y q de la recibida)
- x(t), r(t): señales transmitida y recibida

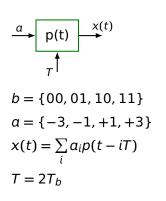
3.4 Transmisión Digital Modelo sistema

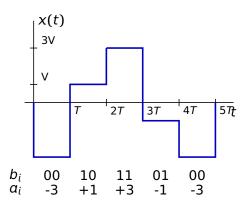
M = 2: modulación binaria

M > 2: modulación M-aria

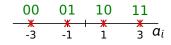

consideraciones

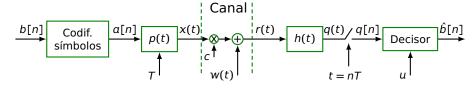
- símbolos equiprobables: $P\{b=b_i\}=P(b_i)=1/M \ \forall i$
- transmisión de símbolos independientes: $b_i \rightarrow a_i \rightarrow x_i(t)$, sistema sin memoria
- $x_i(t)$ de energía finita y limitada a $0 \le t \le T$
- T: período de símbolo
- modelo de canal: AWGN, r(t) = x(t) + n(t)


probabilidad de error de símbolo: $P_e = P\{\hat{b} \neq b\}$

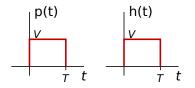

ejemplo: **señales PAM** (Pulse Amplitude Modulation), información en la amplitud de los pulsos

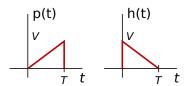
3.4 Transmisión Digital Modulación 2PAM

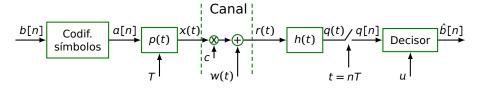

3.4 Transmisión Digital Modulación 4-PAM



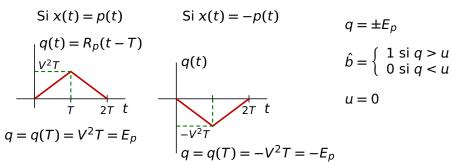
En general: $T = (log_2M)T_b$

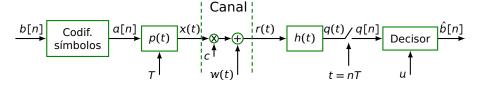

Ej: $1024PAM \rightarrow 10 \text{ bits/símbolo}$




h(t) = p(T - t) "Filtro adaptado", maximiza SNR de q

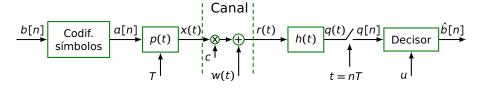
Ejemplos:



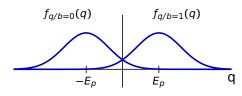


3.4 Transmisión Digital

Si no hay ruido (w(t) = 0) y considerando c = 1



Considerando ruido

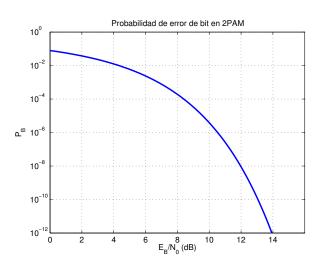

$$w(t) \text{ es AWGN con } S_W(f) = \frac{N_0}{2} \quad \text{(estacionario y con media nula)}$$

$$n(t) = w(t) * h(t)$$

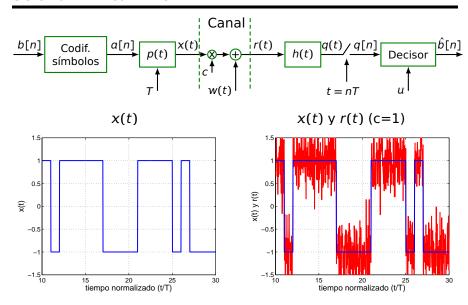
$$n = n(T) \sim N(0, \sigma_N^2)$$

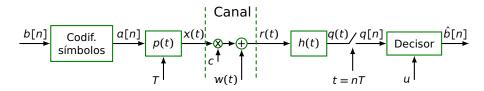
$$\sigma_N^2 = P_N = \frac{N_0}{2} \int |H(f)|^2 df = \frac{N_0}{2} \int |P(f)|^2 df = \frac{N_0}{2} E_p$$

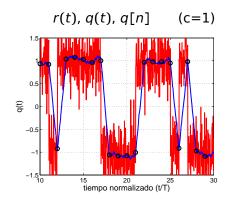
 $q = \pm E_p + n$

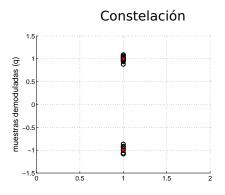


$$q = \pm E_p + n \qquad \qquad n \sim N(0, \frac{N_0}{2} E_p)$$

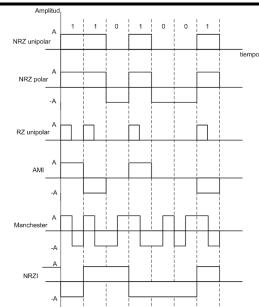

$$P(e/b = 0) = \int_0^\infty f_{q/b = 0}(q) dq = Q\left[\frac{E_p}{\sqrt{\frac{N_0}{2}E_p}}\right] = Q\left[\sqrt{\frac{2E_p}{N_0}}\right] = P(e/b = 1)$$




$$P_b = Q\left[\sqrt{\frac{2E_b}{N_0}}\right] \qquad E_b = E_p$$



Probabilidad de error para señales 2PAM antipodales.



3.4 Transmisión Digital Señales PAM

Formas de onda 2PAM (Códigos de línea)

Prop. buscadas:

- Ausencia DC
- Muchas transiciones para sincronización
- Detección errores

3.4 Transmisión Digital

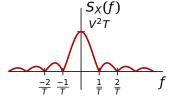
Se puede demostrar:

$$S_X(f) = \frac{1}{T} S_A(f') \Big|_{f' = \frac{f}{fm}} |P(f)|^2$$
 $|P(f)|^2 = S_p(f)$ DEE de $p(t)$

Asumiendo:

- Símbolos binarios independientes
- a[n] es un proceso estacionario discreto en tiempo y amplitud $a[n] \in \{+A, -A\} \Rightarrow R_A[n] = A^2 \delta[n] \Rightarrow S_A(f') = A^2$

$$S_X(f) = \frac{A^2}{T} |P(f)|^2$$


3.4 Transmisión Digital DEP 2PAM

Ejemplo: Señal 2PAM antipodal (NRZ polar)

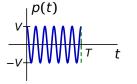
$$|P(f)| = V T \operatorname{sinc}(fT)$$

$$V \qquad A = 1$$

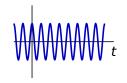
$$S_X(f) = \frac{1}{T} V^2 T^2 sinc^2(fT) = V^2 T sinc^2(fT)$$

$$P_X = R_X(0) = V^2$$

$$E_{X_i} = V^2T$$


$$P_X = \frac{E_{X_i}}{T} = V^2$$

3.4 Transmisión Digital Señales digitales paso banda

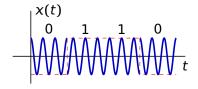

$$p(t) = V\cos(\omega_c t + \phi)$$

$$0 \le t \le T$$

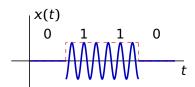
$$\text{habitualmente}\, f_{\text{c}} = \frac{k}{T} \gg \frac{1}{T}$$

$$f_{c} - \frac{1}{7} f_{c} f_{c} + \frac{1}{7} f$$

3.4 Transmisión Digital Señales digitales paso banda: ASK

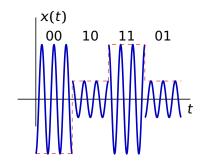

ASK (Amplitude-Shift Keying) ≡ PAM modulada en DBL

$$x_i(t) = a_i V cos(\omega_c t)$$


BASK (Binary ASK)

si
$$a_i = \{-1, +1\}$$

OOK (On-Off keying) \equiv ASK con equivalente paso bajo NRZ Unipolar

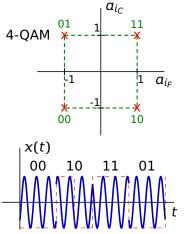


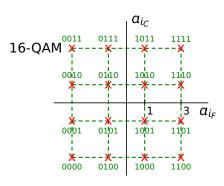
3.4 Transmisión Digital Señales digitales paso banda: ASK

ASK (Amplitude-Shift Keying) \equiv PAM modulada en DBL

$$x_i(t) = a_i V cos(\omega_c t)$$

4-ASK

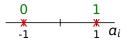


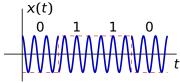

En general M-ASK

3.4 Transmisión Digital Señales digitales paso banda: QAM

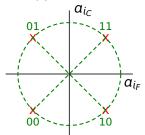
QAM Quadrature Amplitud Modulation

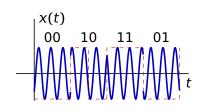
$$x_i(t) = a_{i_F} V cos(\omega_C t + \phi) - a_{i_C} V sen(\omega_C t + \phi)$$


En general **M-QAM**

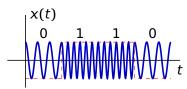

3.4 Transmisión Digital Señales digitales paso banda: PSK

PSK (Phase-Shift Keying)

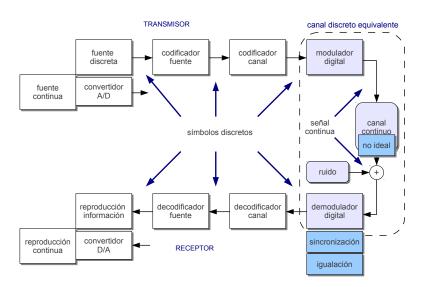

$$x_i(t) = V\cos(\omega_c t + \phi_i) = \cos(\phi_i)V\cos(\omega_c t) - \sin(\phi_i)V\sin(\omega_c t)$$


BPSK
$$\equiv$$
 BASK si $\phi_i = \{0, \pi\}$

QPSK (*Quadrature* PSK) si $\phi_i = \{\pi/4, 3\pi/4, 5\pi/4, 7\pi/4\}$

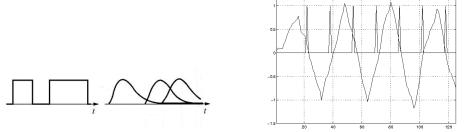

3.4 Transmisión Digital Señales digitales paso banda: FSK

FSK (Frequency-Shift Keying)


$$x_i(t) = V\cos(\omega_i t)$$
$$\omega_i = 2\pi f_i$$

BFSK

$$si f_i = \{f_c - f_0, f_c + f_0\}$$



3.4 Transmisión Digital Revisión sistema de comunicaciones digitales

3.4 Transmisión Digital Problemas prácticos

- Interferencia entre símbolos, **ISI** (distorsión lineal canal, aumento P_b), **igualación**
- sincronización (de portadora, de símbolo, de trama)
- transmisión analógica por SCD (PCM, GSM...)

Ejemplos - símbolos con ISI y sincronización de símbolo.

Martos Naya, E; Fernández Plazaola, U.; Cañete Corripio, F.J; Luque Nieto, M.A. (2012) Sistemas de Comunicaciones. OCW-Universidad de Málaga, http://ocw.uma.es Bajo licencia Creative Commons Attribution-NonComercial-ShareAllike 3.0 Spain

