Práctica 4. Ampliación de EDP. Resolución numérica Ampliación de Matemáticas y Métodos Numéricos

M^a Luz Muñoz Ruiz José Manuel González Vida

Departamento de Matemática Aplicada Universidad de Málaga

Considerar la ecuación del calor $u_t-c^2u_{xx}=0$, para $c=1,\,0\leq x\leq 10,\,t\geq 0$, con condición inicial $u(x,0)=\sin\left(\frac{\pi x}{10}\right)$ y condiciones de contorno $u(0,t)=0,\,u(10,t)=0$, y el esquema explícito

$$u_{j,n+1} = su_{j-1,n} + (1-2s)u_{j,n} + su_{j+1,n},$$

donde $s=\frac{c^2k}{h^2}$. Aproximar la solución de la ecuación y comparar gráficamente con la solución exacta, dada por $u(x,t)=\sin\left(\frac{\pi x}{10}\right)e^{-\left(\frac{\pi}{10}\right)^2t}$, en los siguientes casos:

- (a) Tomando h = 2.5 y k = 1 y dando dos iteraciones del método.
- (b) Tomando h=0.5 y distintos valores de k: k=1, k=0.1, k=0.01, k=0.001, dando tantas iteraciones como sea necesario en cada caso para llegar a t=10.
- (c) Tomando h=0.25 y distintos valores de k: k=1, k=0.1, k=0.01, k=0.001, dando tantas iteraciones como sea necesario en cada caso para llegar a t=10.
- (d) Comenta los resultados obtenidos en los dos apartados anteriores, y recuerda que la *estabilidad* de este método explícito se puede asegurar sólo bajo la condición $0 \le s \le \frac{1}{2}$, esto es, sólo si $k \le \frac{h^2}{2r^2}$.

