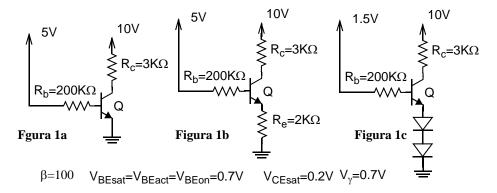
Dispositivos Electrónicos

AÑO: 2010

TEMA 5: PROBLEMAS

Rafael de Jesús Navas González Fernando Vidal Verdú


E.T.S. de Ingeniería Informática

Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo A

Quinta Relación: Cuestiones y Problemas

Problemas

1.-Calcular las intensidades en las ramas y las tensiones en los terminales de los transistores en los circuitos de la Figura 1.

2.- El transistor bipolar Q_S de la Figura 2 se denominada transistor Schottky, y puede ser modelado, según se ilustra también en ella, mediante un transistor BJT normal, Q, y un didodo Schottky, D_S . Demostrar que en dicho modelo el transistor Q nunca puede conducir en saturación.

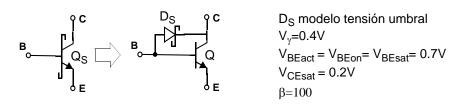
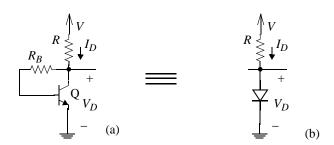
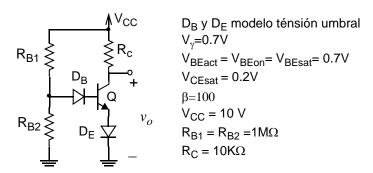


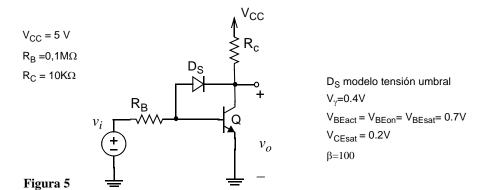
Figura 2

3.- Demostrar que en circuito de la Figura 3a, si el diodo Q conduce lo hace siempre en su región activa, y que se cumple que

$$\begin{split} I_D &= 0 & \text{para } (V_D \leq V_{BEon}) \\ I_D &= \frac{\beta+1}{R_B} (V_D - V_{BEon}) & \text{para } (V_D \geq V_{BEon}) \end{split}$$

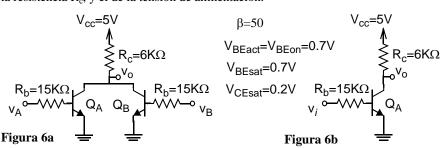
Observa que este comportamiento justifica que dicho circuito pueda ser considerado como un diodo basado en el transistor BJT, como sugiere la Figura 3b.

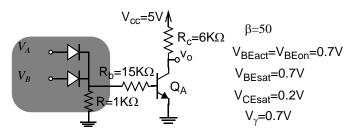




Figura 3

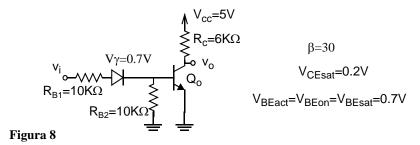
- 4.- En el circuito de la Figura 4:
 - a) Indicar y justificar cuál es el estado de los todos dispositivos semiconductores.
 - b) Determinar el valor de la intensidad de corriente y la caida de tensión en cada uno de los elementos de circuito.
 - c) Determinar la tensión de salida, v_o y la potencia aportada por la fuente $V_{\rm CC}$.

Figura 4


5.- En el circuito de la Figura 5, encontrar el rango de valores de v_i para los cuales el diodo D_s está en conducción, mientras el transistor Q trabaja en su región activa. Determinar el valor de v_o y la potencia aportada por la fuente V_{CC} .



6.- Para las puertas RTL de la Figura 6(a) y (b). Calcula el consumo en cada una de las combinaciones de las entradas posibles (suponer que no hay ninguna puerta conectada a la salida). Repite los cálculos tomando R_c=3kΩ y compara con el resultado anterior. Haz lo mismo con V_{cc}=3V. Responde ahora cómo cambia el consumo con el cambio del valor de la resistencia R_c, y el de la tensión de alimentación.



- 7.- Para el inversor de al Figura 6(b). Obtener la característica de transferencia (v_o en función de v_i). Calcula sus niveles lógicos y sus márgenes de ruido. Determina también cuál será su consumo estático.
- 8.- Comprueba que el circuito de la Figura 7 es una puerta NOR. Nota que el circuito completo puede verse tambien como una puerta OR con diodos (zona sombreada) cua salida se ha conectado a la entrada de un inversor RTL.

Figura 7

9.- En el circuito de la Figura 8, calcular la característica de transferencia (v_o en función de v_i), y representarla gráficamente (dar la expresión matemática de todos los tramos).

- 10.- Si identificamos el circuito de la Figura 8, como un inversor lógic, determina a partir de la curva obtenida en el problema 9:
 - a) sus niveles lógicos
 - b) su margen de ruido.
 - c) Determina también cuál será su consumo estático.

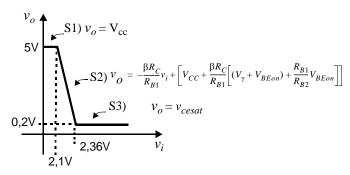
SOLUCIONES:

1.- (a)
$$I_B$$
=0.0215mA, I_C =2.15mA, I_E =2.17mA, V_B =0.7V, V_C =3.55V, V_E =0V;

1.- (b)
$$I_B$$
=0.0107mA, I_C =1.07mA, I_E =1.08mA, V_B =2.86V, V_C =6.79V, V_E =2.16V;

1.- (c)
$$I_B = I_C = I_E = 0$$
, $V_B = 1.5V$, $V_C = 10V$, V_E indeterminada.

5.-
$$v_i \ge 1,17V$$
; $v_o = 0,3V$; $P_{V_{CC}} = 2,35$ mW.


6.- (a)
$$P_{00}$$
=0W, P_{01} = P_{10} = P_{11} =4mW.
Si R_c =3k Ω , P_{00} =0W, P_{01} = P_{10} = P_{11} =8mW.
Si V_{cc} =3V, P_{00} =0W, P_{01} = P_{10} = P_{11} =1.4mW.
(b) P_0 =0W, P_1 =4mW.
Si R_c =3k Ω , P_0 =0W, P_1 =8mW.

Si
$$V_{cc}=3V$$
, $P_0=0W$, $P_1=1.4mW$.

7.-
$$V_{OH}$$
=5V, V_{OL} =0.2V, V_{IL} =0.7V, V_{IH} =0.94V, $NM1$ =4.06V, $NM0$ =0.5V.

$$\begin{split} 8.\text{- Para } & \text{V}_{\text{A}} = 0 \text{V } \text{V}_{\text{B}} = 0 \text{V } \text{V}_{\text{o}} = 5 \text{V}, \\ & \text{Para } \text{V}_{\text{A}} = 0 \text{V } \text{V}_{\text{B}} = 5 \text{V } \text{V}_{\text{o}} = 0.2 \text{V}, \\ & \text{Para } \text{V}_{\text{A}} = 5 \text{V } \text{V}_{\text{B}} = 0 \text{V } \text{V}_{\text{o}} = 0.2 \text{V}, \\ & \text{Para } \text{V}_{\text{A}} = 5 \text{V } \text{V}_{\text{B}} = 5 \text{V } \text{V}_{\text{O}} = 0.2 \text{V}. \end{split}$$

9.- S2)
$$(V_{\gamma} + V_{BEon}) + \frac{R_{B1}}{R_{R2}} V_{BEon} \le v_i \le \frac{R_{B1}}{\beta R_C} (V_{CC} - V_{CEsat}) + \left[(V_{\gamma} + V_{BEon}) + \frac{R_{B1}}{R_{R2}} V_{BEon} \right]$$

- 10.- (a) Los niveles lógicos son fácilmente identificables en la gráfica de la solución al problema 9.
- 10.- (b) $NM_L = 1.9V y NM_H = 2.64V$. Por tanto NM = 1.9V.
- 10.- (c) $P(V_{CC}) = 4mW$

FORMULARIO:

$$Id \xrightarrow{VV} VV \xrightarrow{ideal} VV \xrightarrow{VV} Si \quad I_d \ge 0$$

$$VV \Rightarrow ideal VV \Rightarrow Id \xrightarrow{VV} VV \Rightarrow i \quad V_d \le 0$$

$$E \Rightarrow V_{BE} \le V_{BE} \Rightarrow I_B \Rightarrow 0$$

$$V_{BE} \Rightarrow I_B \Rightarrow 0$$

$$V_{CE} \Rightarrow I_B \ge 0$$

