
METROLOGÍA Y TEORÍA DE ERRORES

Medida	$V\pm\Delta V$ (V)	$I \pm \Delta I(A)$	$R \pm \Delta R(\Omega)$	$P \pm \Delta P(W)$
1	50 ± 5	0.40 ± 0.02	130±20	20 ± 3
2	60 ± 5	0.44 ± 0.02	140±20	26 ± 3
3	70 ± 5	0.48 ± 0.02	150±20	34 ± 4
4	80 ± 5	0.52 ± 0.02	150±20	42 ± 4
5	90 ± 5	0.56 ± 0.02	160±20	50 ± 5
6	100 ± 5	0.58 ± 0.02	170±20	58 ± 5
7	110 ± 5	0.62 ± 0.02	177±14	68 ± 5
8	1 ± 5	0.64 ± 0.02	188±14	77 ± 6
9	± 5	0.66 ± 0.02	197±14	86 ± 6

LA MEDIDA Y SU INCERTIDUMBRE

Medir →

Comparar la cantidad de una magnitud física con una cantidad de referencia que se toma como unidad.

Error —

El proceso de medición siempre esta afectado por un error.

Incertidumbre

Parámetro asociado al resultado de una medida que caracteriza la dispersión de los valores que razonablemente se pueden asignar a la magnitud medida.

$$\overline{x} - \Delta x \le x \le \overline{x} + \Delta x$$

Errores Sistemáticos

- Instrumentales
- Personales
- Metódicos

Errores Accidentales Causas aleatorias o

SENSIBILIDAD División de escala

Intervalo más pequeño de la magnitud medible con un instrumento

 $x = \overline{x} \pm \Delta x$

Incertidumbre absoluta o error absoluto

Precisión

Exactitud

Incertidumbre y cifras significativas

Incertidumbre o error absoluto (△x)

$$\longrightarrow$$
 $x = \overline{x} \pm \Delta x$

Incertidumbre o error relativo (ε_r)

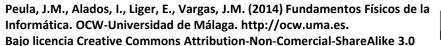
$$\longrightarrow \varepsilon_r = \frac{\Delta x}{\bar{x}}$$

Se expresa en %

Expresión de las medidas

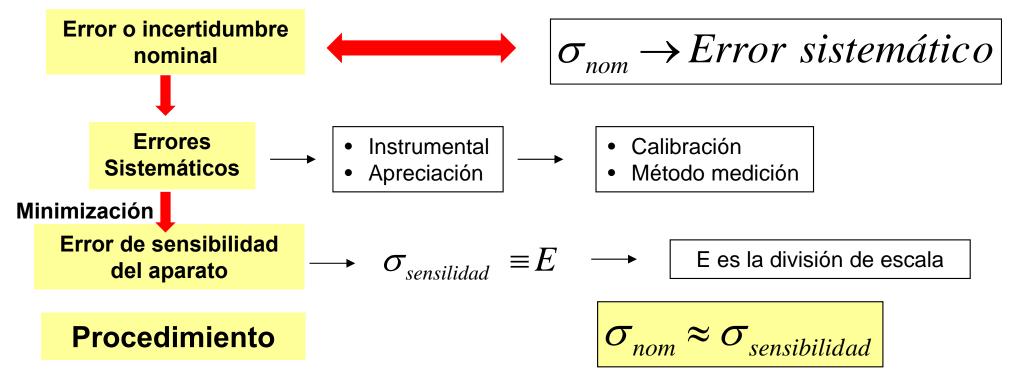
La incertidumbre o error absoluto sólo tendrá una cifra significativa

La magnitud se expresa con tantas cifras significativas como indique su error absoluto

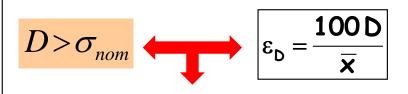

Expresión incorrecta	Expresión correcta	
$(5.328 \pm 0.118) \text{ m}$	$(5.33 \pm 0.12) \text{ m}$	
(8.4 ± 0.076) g	$(8.40 \pm 0.08) \text{ g}$	
$(6320 \pm 257) \text{ s}$	$(6300 \pm 300) \text{ s}$	
$(32.3541 \pm 0.17) \text{ V}$	$(32.4 \pm 0.2) \text{ V}$	
$(203.48 \pm 0.4) \text{ mA}$	$(203.5 \pm 0.4) \text{ mA}$	
$(1.2038 \pm 0.0103) \Omega$	$(1.204 \pm 0.010) \Omega$	

Notación científica

$$95000 = 9.5 \cdot 10^4$$


 $6300 \pm 300 = (6.3 \pm 0.3) \cdot 10^3$

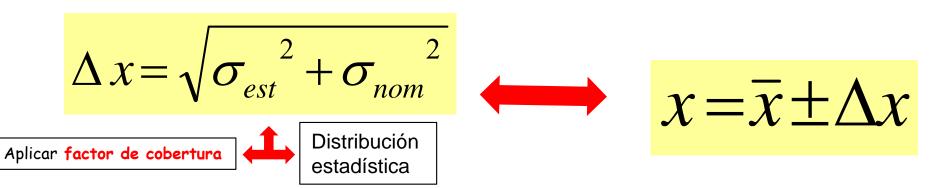
MEDIDA DIRECTA DE UN MAGNITUD


- Inicialmente se realizan tres medidas de la magnitud física.
- Se calcula la **Dispersión** (diferencia entre valores extremos).
- Se compara la dispersión con el error de sensibilidad.

$$D=0 D \le \sigma_{nom} \left\{ \begin{array}{l} \overline{\mathbf{x}} = \frac{\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3}{3} \\ \Delta x = \sigma_{nom} \end{array} \right\} \left\{ \begin{array}{l} \overline{\mathbf{x}} = \overline{\mathbf{x}} \pm \Delta x \end{array} \right.$$

Open Course Ware

MEDIDA DIRECTA DE UN MAGNITUD



$\epsilon_{ m D}$	Medidas a realizar
$\varepsilon_{\rm D}$ < 2 %	3
$2 \% < \epsilon_{\rm D} < 8 \%$	6
$8 \% < \epsilon_{\rm D} < 15\%$	15
$\varepsilon_{\rm D} > 15 \%$	50

Incertidumbre asociada a la dispersión estadística

$$\sigma_{est} = \sigma_{x} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{N(N-1)}} \longrightarrow \text{Desviación estándar del promedio}$$

Incertidumbre de una medida directa repetida N veces

MEDIDA INDIRECTA DE UN MAGNITUD

Ley de propagación de errores o incertidumbres

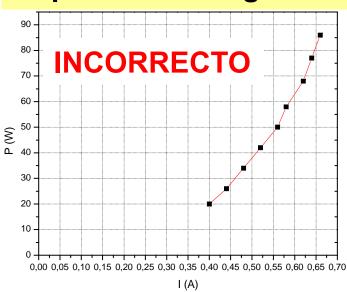
$$y = f(x) \rightarrow \Delta y = \sqrt{\left(\frac{df}{dx}\right)^2 \Delta x^2}$$

$$y = f(x_i, ..., x_n) \rightarrow \Delta y = \sqrt{\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 \Delta x_i^2}$$

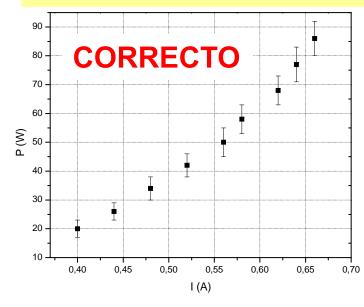
El resultado de una medida indirecta nunca podrá tener más cifras significativas que las de la medida directa que menos tenga

Ejemplo

$$Z = m x^{a} y^{b} \rightarrow \Delta z = \sqrt{\left(\frac{\partial Z}{\partial x}\right)^{2} \Delta x^{2} + \left(\frac{\partial Z}{\partial y}\right)^{2} \Delta y^{2}} \rightarrow u_{z} = \sqrt{\left(max^{a-1} y^{b}\right)^{2} \Delta x^{2} + \left(max^{a} y^{b-1}\right)^{2} \Delta y^{2}}$$



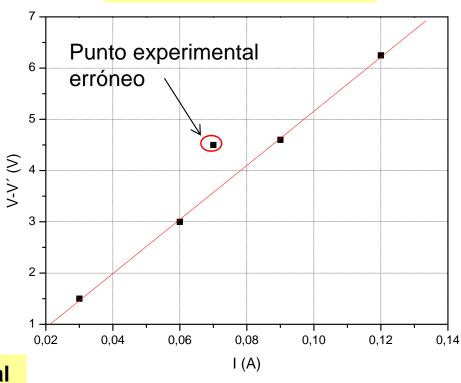
REPRESENTACIÓN DE DATOS EXPERIMENTALES


Elaboración de tablas

Medida	V±ΔV (V)	I ±Δ I (A)	$\mathbf{R} \pm \Delta \mathbf{R}(\Omega)$	P ±Δ P (W)
1	50 ± 5	0.40 ± 0.02	130±20	20 ± 3
2	60 ± 5	0.44 ± 0.02	140±20	26 ± 3
3	70 ± 5	0.48 ± 0.02	150±20	34 ± 4
4	80 ± 5	0.52 ± 0.02	150±20	42 ± 4
5	90 ± 5	0.56 ± 0.02	160±20	50 ± 5
6	100 ± 5	0.58 ± 0.02	170±20	58 ± 5
7	110 ± 5	0.62 ± 0.02	177±14	68 ± 5
8	120 ± 5	0.64 ± 0.02	188±14	77 ± 6
9	130 ± 5	0.66 ± 0.02	197±14	86 ± 6

Representación gráfica

Relación entre magnitudes


REPRESENTACIÓN DE DATOS EXPERIMENTALES

Dependencia lineal

V-V' (V)	I (A)
1.52 ± 0.01	0.03 ± 0.02
3.01 ± 0.01	0.06 ± 0.02
4.52 ± 0.01	0.07 ± 0.02
4.60 ± 0.01	0.09 ± 0.02
6.25 ± 0.01	0.12 ± 0.02

$$V-V'=RI$$

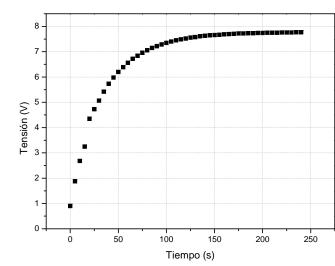
Representación gráfica

La ley de Ohm predice una dependencia lineal

- La variable dependiente, y, se corresponde con V-V´
- La variable independiente x, se corresponde con I
- El parámetro **b**, pendiente de la recta, tiene un significado físico: es equivalente a la resistencia eléctrica, **R**.

Ecuación matemática de una recta

$$y = a + b x$$



REPRESENTACIÓN DE DATOS EXPERIMENTALES

Funciones exponeciales

$$y = ma^x \rightarrow \log y = \log m + x \log a$$

 $y = mx^a \rightarrow \log y = \log m + a \log x$

Papel semilogarítmico → {
•Eje abcisas lineal
•Eje ordenada logarítmico

 $\log y vs x \longrightarrow RECTA$

Papel logarítmico

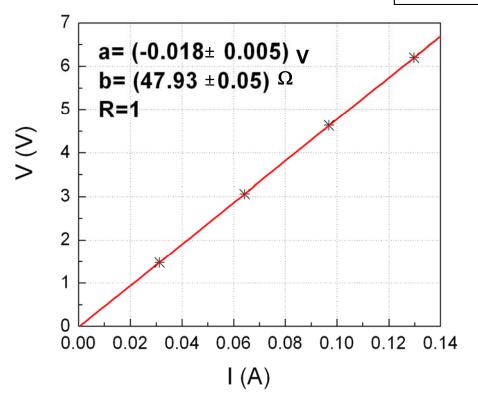
→ {
•Eje abcisas logarítmico
•Eje ordenada logarítmico

 $\log y vs \log x \longrightarrow RECTA$

Método cuantitativo de análisis lineal: ajuste por mínimos cuadrados

$$\rightarrow y = a + bx$$

Cálculo de la ordenada en el origen (a) y la pendiente de la recta (b)



ANÁLISIS DE DATOS EXPERIMENTALES

Ajuste por mínimos cuadrados

Dependencia lineal —

$$y=a+bx$$

Cálculo de la ordenada en el origen (a) y la pendiente de la recta (b)

Sentido físico de ambos parámetros

Cálculo de las magnitudes físicas y su incertidumbre

Interpretación de las experiencias

Conclusiones acerca de los resultados obtenidos en la experiencia

