Matemáticas III Tema 5 Integrales de línea

Muñoz Ruiz, M.L. Merino Córdoba, S. Ware

2014. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia

Rodríguez Sánchez, F.J.

Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain

Integrales de línea de campos escalares

Definición

Sea C una curva parametrizada regular a trozos en el plano con parametrización $\alpha(t)$ con $t \in [a,b]$. Sea el campo escalar $f: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ de forma que $C \subseteq U$ y f es continuo en C. La integral de línea de f a lo largo de la curva C se define como el número

$$\int_{C} f dC = \int_{a}^{b} f(\alpha(t)) \|\alpha'(t)\| dt$$

Igualmente se define la integral de línea de campos escalares de dimensión tres.

Proposición

La integral de línea de campos escalares es independiente de la parametrización elegida para la curva.

ANDALUCÍA TECH

Propiedades¹

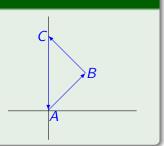
Sean dos campos escalares $f,g\colon U\subseteq\mathbb{R}^2\to\mathbb{R}$ continuos en U y $C\subseteq U$ una curva parametrizada regular a trozos.

- **2** Si $f \le g$ entonces $\int_C f \, dC \le \int_C g \, dC$.
- La longitud de la curva *C* es la integral de línea a lo largo de *C* del campo escalar constante igual a 1.

OCW UMA Tema 5 3 / 27

Calculemos la integral del campo escalar f(x,y) = sen(x+y) a lo largo del triángulo de vértices A(0,0), B(1,1) y C(0,2).

$$\int_C \operatorname{sen}(x+y) \, dC$$



$$\int_{C} f \, dC = \int_{0}^{1} \sin(2t)\sqrt{2} \, dt + \int_{0}^{1} \sin 2\sqrt{2} \, dt + \int_{0}^{1} 2 \sin(2-2t) \, dt =$$

$$= \left[-\frac{\cos 2t}{\sqrt{2}} \right]_{0}^{1} + \left[\sqrt{2}t \sin 2 \right]_{0}^{1} + \left[\cos(2-2t) \right]_{0}^{1} =$$

$$= \frac{2\sqrt{2} \sin 2 - (2+\sqrt{2}) \cos 2 + \sqrt{2} + 2}{2}$$

Calculemos la masa de un alambre de forma helicoidal $\alpha(t)=(a\cos t, a\sin t, bt)$, con $a,b\in\mathbb{R}^+$, que tiene una función de densidad $\rho(x,y,z)=x^2+y^2+z^2$, entre los puntos t=0 y $t=2\pi$.

Tenemos que $\alpha'(t) = (-a \operatorname{sen} t, a \operatorname{cos} t, b)$, luego

$$M = \int_{C} \rho \, dC =$$

$$= \int_{0}^{2\pi} (a^{2} + b^{2}t^{2}) \sqrt{a^{2} + b^{2}} \, dt =$$

$$= 2a^{2} \sqrt{a^{2} + b^{2}} \pi + b^{2} \sqrt{a^{2} + b^{2}} \int_{0}^{2\pi} t^{2} \, dt =$$

$$= \frac{\sqrt{a^{2} + b^{2}} \left(8\pi^{3}b^{2} + 6\pi a^{2}\right)}{3}$$

Integrales de línea de campos vectoriales

Definición

Sea C una curva regular a trozos con parametrización $\alpha(t)$, $t \in [a,b]$. Sea el campo vectorial $F: U \subseteq R^2 \to \mathbb{R}$ tal que $C \subseteq U$ y F es continuo en C. La integral de línea de F (o *circulación* de F) a lo largo de C se define

$$\int_{C} F \cdot dC = \int_{a}^{b} F(\alpha(t)) \cdot \alpha'(t) dt$$

Si C = (x, y), su derivada dC = (dx, dy) y al campo es F = (P, Q)

$$\int_C F \cdot dC = \int_C P \, dx + Q \, dy$$

Si C es una curva cerrada entonces se denota

$$\oint_C F \cdot dC$$

Para un campo vectorial $F = (F_1, F_2, F_3)$ en el espacio,

$$\int_C F \cdot dC = \int_C F_1 dx + F_2 dy + F_3 dz$$

Proposición

El valor de la integral de línea depende únicamente de la orientación de la parametrización tomada para C, es decir, es independiente salvo por la orientación.

Propiedades

OCW UMA Tema 5 7 / 27

Calculemos el trabajo (integral de línea) de una partícula dentro del campo de fuerzas $F(x, y) = (x + y, xy^2)$ que se mueve por la curva cerrada determinada por la parábola $x = y^2$ entre el punto A(1,1) y el punto B(1,-1) y un segmento recto hasta al punto A.

Solución: El tramo de la parábola queda parametrizado como $\alpha(t) = (t^2, -t)$ con $t \in [-1, 1]$ y el tramo recto como $\beta(t) = (1, 2t - 1)$ con $t \in [0, 1]$. Luego

$$\oint_C F \cdot dC = \oint_C (x + y, xy^2) \cdot (dx, dy) = \oint_C (x + y) dx + xy^2 dy =
= \left[\frac{2t^4}{4} - \frac{2t^3}{3} - \frac{t^5}{5} \right]_{-1}^1 + \left[\frac{(2t - 1)^3}{3} \right]_0^1 = -\frac{26}{15} + \frac{2}{3} =
= -\frac{16}{15}$$

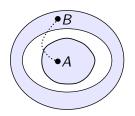
Tema 5

Campos conservativos. Potencial y rotacional.

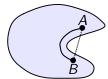
Conjuntos conexos y conjuntos convexos

Un conjunto U se dice **conexo** si para cualquier par de puntos suyos existe un camino (curva parametrizada regular a trozos) interior a U que los une.

Se dice que el conjunto U es **convexo** si el segmento que une a cualquier par de puntos de U está contenido en U. Evidentemente, si U es convexo entonces U es conexo.



Conjunto NO conexo



Conjunto conexo que NO es convexo

El conjunto \mathbb{R}^2 es, obviamente, convexo, pero si le quitamos un punto (por ejemplo el origen de coordenadas) ya no es convexo, aunque sigue siendo conexo. Si a \mathbb{R}^2 le quitamos una recta, por ejemplo uno de los ejes coordenados, deja de ser convexo y también deja de ser conexo.

Ejemplo

Si consideramos el conjunto \mathbb{R}^3 menos uno de sus ejes coordenados no es convexo pero si es conexo. ¿Qué quitarías a \mathbb{R}^3 para que deje de ser conexo?

Componentes conexas

Los conjuntos no conexos se pueden considerar como una unión de conjuntos que sí son conexos. A cada uno de ellos se le denomina componente conexa.

ANDALUCÍA TECH

Campo vectorial conservativo

Definición

Sea F un campo vectorial continuo en un conjunto U conexo. Se dice que F es conservativo en U si para todo par de puntos $A, B \in U$ las integrales de línea a lo largo de todos los caminos contenidos en U que tienen a A como punto inicial y a B como punto final dan el mismo resultado.

En ese caso puede escribirse, $\int_C F \cdot dC = \int_A^B F \cdot dC$.

Definición (Potencial de un campo vectorial)

Sea F un campo vectorial continuo en un conjunto U conexo y abierto. Se dice que F deriva de un potencial en U si existe un campo escalar $f:U\to\mathbb{R}$ (llamado potencial de F en U) de clase C^1 que verifique $\nabla f=F$ en U.

ANDALUCÍA TECH

OCW UMA Tema 5 11 / 27

El c. v.
$$F(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$$
 está definido en $U = \mathbb{R}^2 - \{(0,0)\}$ (conexo y abierto) y deriva del siguiente potencial $f(x,y) = \frac{1}{2}\ln(x^2 + y^2)$.

Regla de Barrow para integrales de linea.

Sea $F: U \to \mathbb{R}^2$ un c. v. continuo en un conjunto U conexo y abierto. Si F deriva de un potencial f en U entonces F es **conservativo** en U y además

$$\int_{A}^{B} F \cdot dC = f(B) - f(A)$$
 para todo potencial f suyo.

Teorema (Fundamental de la integal de linea)

Sea $F: U \to \mathbb{R}^2$ un c. v. continuo en U conexo y abierto. Si F es conservativo en U entonces F deriva de un potencial en U y además

$$f(x,y) = \int_A^{(x,y)} F \cdot dC$$
 es un potencial suyo.

OCW UMA Tema 5 12 / 27

Condiciones equivalentes de campo conservativo.

Sea $F: U \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ un campo vectorial continuo en un conjunto U conexo y abierto. Son equivalentes:

- F es conservativo en U.
- \circ F deriva de un potencial en U.
- **3** Para todo camino cerrado *C* contenido en *U*, $\oint_C F \cdot dC = 0$.

Ejemplo

El siguiente campo vectorial $F(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$ deriva de un potencial, por tanto es conservativo. Veamos que su integral sobre una la circunferencia \mathbb{S}^1 es nula.

Cálculo del potencial de un campo conservativo

Método 1. Utilizando el teorema fundamental de la integral de línea a lo largo de un camino C conveniente desde un punto $A(a_1, a_2)$ al punto (x, y).

$$f(x,y) = \int_{A}^{(x,y)} F \cdot dC$$

Método 2. Integrando cada coordenada del campo vectorial F.

$$\nabla f = (f_x(x, y), f_y(x, y)) = (F_1(x, y), F_2(x, y)) \Rightarrow$$
$$\Rightarrow f(x, y) = \int F_1(x, y) dx + \phi(y)$$

Derivando respecto de la variable y tenemos

$$\phi(y) = \int \left[F_2(x, y) - \frac{\partial \int F_1(x, y) dx}{\partial y} \right] dy$$

de donde se calcula f(x, y).

Calculemos el potencial de $F(x,y) = (xy^2 + x + 1, x^2y - 2)$ por ambos métodos.

Método 1. Como está definida en todo \mathbb{R}^2 , consideramos el segmento desde (0,0) a (x,0): $\alpha(t)=(t,0)$, con $0 \le t \le x$ y el segmento desde (x,0) a (x,y): $\beta(t)=(x,t)$ con $0 \le t \le y$. Entonces

$$f(x,y)) = \int_{(0,0)}^{(x,y)} F \cdot dC = \int_0^x (t+1) dt + \int_0^y (x^2t - 2) dt =$$
$$= \frac{x^2}{2} + x + \frac{x^2y^2}{2} - 2y + C$$

OCW UMA Tema 5 15 / 27

Calculemos el potencial de $F(x,y) = (xy^2 + x + 1, x^2y - 2)$ por ambos métodos.

Método 2. Integrando respecto de x tenemos

$$f(x,y) = \int (xy^2 + x + 1) dx = \frac{x^2y^2}{2} + \frac{x^2}{2} + x + \phi(y)$$
$$x^2y - 2 = x^2y + \phi'(y) \Rightarrow \phi'(y) = -2 \Rightarrow \phi(y) = -2y + C$$

luego

$$f(x,y) = \frac{x^2y^2}{2} + \frac{x^2}{2} + x - 2y + C$$

OCW UMA Tema 5 15 / 27

Rotacional en el plano

Si $F = (F_1, F_2)$ es un campo escalar, el rotacional se define de la forma

$$\operatorname{rot} F = \nabla \times F = \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}$$

Condición necesaria de campo conservativo.

Sea F un c. v. de clase C^1 en un conjunto U conexo y abierto. Si F es conservativo en U entonces F es irrotacional en U (rot(F) = 0 en todo U).

Condición equivalente de campo conservativo para regiones convexas.

Sea $F: U \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ un campo vectorial de clase C^1 en un conjunto U convexo y abierto. El campo F es conservativo en U si, y sólo si, F es irrotacional en U.

OCW UMA Tema 5 16 / 27

Rotacional en el espacio

Todos los conceptos y resultados anteriores son aplicables a campos vectoriales en el espacio, pero en ese caso hay que tener en cuenta que el concepto de rotacional varía, siendo éste ahora un campo vectorial. Más concretamente:

Si $F = (F_1, F_2, F_3)$ es un campo vectorial de tres dimensiones de clase C^1 en el abierto U, entonces se define el rotacional del campo F en U como un nuevo campo vectorial dado por

$$\begin{aligned} \operatorname{rot} F &= \nabla \times F = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} = \\ &= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \end{aligned}$$

ANDALUCÍA TECH

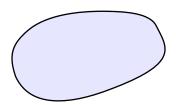
OCW UMA Tema 5 17 / 27

Conjuntos simplemente conexos en el plano

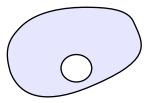
Una curva de Jordan es un camino cerrado simple.

Se dice que la región $U\subseteq\mathbb{R}^2$ es simplemente conexa si es conexa y la región encerrada por cualquier curva de Jordan trazada en U está también contenida en U.

Si una región conexa no es simplemente conexa se denomina múltiplemente conexa.



Simplemente conexa



Multiplemente conexa

Teorema de Green para regiones simplemente conexas.

Sea C una curva de Jordan y D la región encerrada por ella. Si $F\colon U\subseteq\mathbb{R}^2\to\mathbb{R}^2$ es un campo vectorial plano de clase C^1 en el abierto U de forma que $D\subseteq U$ entonces:

$$\iint_D \operatorname{rot} F \, dx dy = \oint_{C^+} F \cdot dC,$$

donde C^+ representa la curva de Jordan orientada positivamente.

Si F=(P,Q) la igualdad anterior la podemos escribir también como

$$\iint_{D} (Q_{x} - P_{y}) dxdy = \oint_{C^{+}} P dx + Q dy$$

OCW UMA Tema 5 19 / 27

Calculemos la integral $\oint_C y \, dx + x^2 \, dy$ siendo C las siguientes curvas cerradas:

1 la curva que rodea el cuadrado $[0,1] \times [0,1]$.

$$\oint_C y \, dx + x^2 \, dy = \iint_{[0,1]\times[0,1]} (2x-1) \, dx dy = \int_0^1 (2x-1) \, dx = 0$$

2 La circunferencia de radio 1 centrada en el origen.

$$\oint_C y \, dx + x^2 \, dy = \iint_D (2x - 1) \, dx dy =$$

$$= \int_0^{2\pi} \left(\frac{2}{3} \cos \theta - \frac{1}{2}\right) \, d\theta = -\pi$$

OCW UMA

El teorema de Green nos puede facilitar también el cálculo de integrales en recintos acotados bordeados por curvas conocidas.

Ejemplo

Calculemos el área de la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ usando el teorema de Green.

En este caso usamos cualquier campo vectorial F = (P, Q) que cumpla $Q_x - P_y = 1$, por ejemplo F = (0, x), así

$$A = \iint_D 1 \, dx dy = \oint_{C^+} x \, dy$$

y parametrizando la elipse como $\alpha(t)=(a\cos t,b\sin t)$, con $0\leq t\leq 2\pi$, tenemos

$$A = \int_0^{2\pi} a \cos t \, b \cos t \, dt = 4ab \int_0^{\frac{\pi}{2}} \cos^2 t \, dt = 2ab\beta \left(\frac{1}{2}, \frac{3}{2}\right) = \pi ab$$

Condición equivalente de campo conservativo para regiones simplemente conexas.

Sea F un campo vectorial de clase C^1 en un abierto simplemente conexo U. El campo F es conservativo en U si, y sólo si, F es irrotacional en U.

Teorema de Green para regiones múltiplemente conexas.

Si C, C_1, \ldots, C_p , son curvas de Jordan de forma que C_1, \ldots, C_p verifican:

- están contenidas en la región interior de C,
- 2 son disjuntas dos a dos,
- ninguna está contenida en la región encerrada por otra.

Sea D la región que definen. Si F es un c. v. de clase C^1 en el abierto que contiene a D.

$$\iint_{D} \operatorname{rot} F \, dxdy = \oint_{C^{+}} F \cdot dC - \sum_{i=1}^{p} \oint_{C_{i}^{+}} F \cdot dC_{i}$$

Calculamos $\iint_D (x+y) \, dx dy$, usando el anterior teorema, donde D es la región comprendida entre los círculos concéntricos al origen de radio 1 y 2, respectivamente.

Para aplicar el teorema de Green buscamos un campo vectorial F=(P,Q) de forma que $Q_x-P_y=x+y$, por ejemplo F(x,y)=(-xy,xy). Si representamos por C y C_1 las circunferencias de radio 2 y radio 1, respectivamente, tenemos

$$\iint_{D} (x+y) dxdy = \oint_{C^{+}} -xy dx + xy dy - \oint_{C_{1}^{+}} -xy dx + xy dy =$$

$$= \dots$$

OCW UMA Tema 5 23 / 27

Calculamos $\iint_{D} (x + y) dxdy$, usando el anterior teorema, donde D es la región comprendida entre los círculos concéntricos al origen de radio 1 v 2. respectivamente.

Para aplicar el teorema de Green buscamos un campo vectorial F = (P, Q)de forma que $Q_x - P_y = x + y$, por ejemplo F(x, y) = (-xy, xy). Si representamos por C y C_1 las circunferencias de radio 2 y radio 1, respectivamente, tenemos

$$\iint_{D} (x+y) dxdy = \oint_{C^{+}} -xy dx + xy dy - \oint_{C_{1}^{+}} -xy dx + xy dy =$$

$$= \dots$$

$$= 0$$

23 / 27

Ecuaciones difenciales exactas

Definición

Sea F=(P,Q) un c. v. continuo en un conjunto conexo $U\subseteq\mathbb{R}^2$, diremos que una ecuación diferencial de la forma

$$P(x,y) + Q(x,y)y' = 0$$
 o equivalentemente $P(x,y)dx + Q(x,y)dy = 0$

es una ecuación diferencial exacta si F = (P, Q) deriva de un potencial.

Solución de una ecuación diferencial exacta.

Si la ecuación P(x,y) + Q(x,y)y' = 0 es exacta y f es es una función potencial del correspondiente campo vectorial F = (P,Q) entonces la solución general de dicha ecuación diferencial viene dada por f(x,y) = cte.

Ejemplo

La ecuación diferencial $y\,y'=x$ es exacta. ¿Cuáles son las soluciones que verifican y(0)=1?

Factores integrantes

Definición

Diremos que una función $\mu(x,y)$ es un factor integrante de la ecuación diferencial P(x,y)+Q(x,y)y'=0 cuando

$$\mu(x, y)P(x, y) + \mu(x, y)Q(x, y)y' = 0$$

es una ecuación diferencial exacta.

Caracterización del factor integrante en regiones simplemente conexas.

Sea F=(P,Q) un campo vectorial de clase C^1 en un conjunto simplemente conexo $U\subseteq \mathbb{R}^2$, entonces $\mu(x,y)$ es un factor integrante de P(x,y)+Q(x,y)y'=0 si, y sólo si,

$$\mu_y P - \mu_x Q = (Q_x - P_y)\mu.$$

Factor integrante que sólo depende de una variable.

Un caso sencillo es cuando el factor depende de una sola variable, por ejemplo de x, esto es $\mu(x,y)=\delta(x)$. En este caso la caracterización es

$$-\delta' Q = (Q_x - P_y)\delta$$

Un factor integrante $\mu(x, y)$ sólo dependen de x, si y sólo si, el cociente

$$\frac{Q_x(x,y)-P_y(x,y)}{-Q(x,y)}$$

es una función, llamémosla g, que sólo depende de x. Para obtener un factor integrante con esta propiedad, basta resolver la ecuación diferencial $\delta' = g(x)\delta$, que es de variables separadas. En concreto, $\delta(x) = e^{\int g(x) \, dx}$.

Ejemplo

Resolver ecuación diferencial y(1+xy)dx - xdy = 0.

ANDALUCÍA TECH

OCW UMA Tema 5 26 / 27

Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba, S. 2014.

OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain

