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Foreword

Writing just another textbook in theory of automata, formal languages or computability looks
like pointless: there are so many now, that we can hardly do better. However, every lecturer
knows what is to be taught, and the lectures benefit from this particular nomenclature in a
given subject, or that concrete demonstration. In the end, you miss that textbook that satisfies
your needs, that fits your communication skills or your expertise in the area. Such is the
motivation behind this compilation: to become the textbook in the subject of Theory of
automata and formal languages, in the traditional sense, but also, to be an ever-evolving
document, that integrates what others have expressed before, the examples and exercises that
were designed by other authors in distant parts of the planet, unsubscribing from a particular
terminology, and unifying different forms of representing the same concepts.

It is the sign of the XXI century: collaboration, contribution to common initiatives. In this
sense, this manuscript has benefitted from the efforts of many people. Part of its content was
extracted from previous documents, kindly offered to the open access community by their
authors [Ruohonen, 2009; Jian et al, 2002]. The resulting manuscript has the structure of
[Ramos and Morales, 2011], which is the reference book in Spanish for the subject Teoria de
automatas y lenguajes formales (that is the reason because numbering in some epigraphs is
not always correlative). The selection and compilation of the manuscript has been performed
by students taking the subject during the course 2015-16: ITustina Andronic (Erasmus student)
and Esteban Delgado; and curated by Francisco Vico, professor of Computer Science and
Artificial Intelligence at the University of Malaga, responsible for the content of this subject
at the university’s OpenCourseWare programme.

A package of software that implements the main concepts in this manuscript is also under
development for the programming language Octave, and it has been made public under CCO
license at https://bitbucket.org/fjvico/umafol. This document itself, in its latest version can

also be accessed at http://j.mp/talf ocw.

This is just version 1.0, coming years will see it develop, enrich and accommodate new
knowledge and experience.

Francisco Vico
Malaga, December 8, 2015
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Notation
N the set of nonnegative integers (or natural numbers), i.e., {0, 1,2, ... } (U+2115)
P the set of positive integers (U+2119)
R the set of real numbers (U+211D)
L the set of integers (U+2124)
@ the empty set (U+2205)
c the (infix) subset relation between sets (U+2286)
C the (infix) proper subset relation between sets (U+2282)
) the infix union operation on sets (U+222A)
N the infix intersection operation on sets (U+2229)
~ the prefix complementation operation on sets (U+007E)
- the infix set difference operation on sets (U+2212)
X the infix cartesian product of sets (U+00D7)
A" the postfix n-fold cartesian product of 4, i.e. AX ... x4 (n times)
24 the powerset of 4
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1 Regular languages

Languages and grammars

Definition 2.1. An alphabet is a finite nonempty set of symbols. Symbols are assumed to be
indivisible.

Definition 2.2. A string over an alphabet X is a finite sequence of symbols of Z.

Definition 2.3. A special string which contains no symbols at all is the empty string, and it is
represented by € (sometimes A or A).

Definition 2.4. The set of all strings over an alphabet X is denoted by X* , and the set of all
nonempty strings over X is denoted by X" . The empty set of strings is denoted by 2.

Definition 2.5. The number of symbols in a string x is called its length, denoted by |x|. The
length of € is 0.

Definition 2.9. Letx = a, a, ... a,and y = b, b, ... b, be two strings. The concatenation of x
and y, denoted by xy, is the string @, a, ... a,b,b, ... b,.

Then for any string x, ex = xe¢ = x. For any string x and integer n > 0, we use x" to denote the
string formed by sequentially concatenating n copies of x.

These are examples of word concatenation in the alphabet {a, b, c}:

X =aacbba, y= caac, xy = aacbbacaac
x =aacbba, y=g, xy =Xx = aacbba
X=¢, ¥ = caac, Xy =y = caac

Concatenation is associative, 1.e.,

x(yz) = (xy)z

As a consequence of this, repeated concatenations can be written without parentheses. On the
other hand, concatenation is usually not commutative, As a rule then

Xy # VX,

but not always, and in the case of a unary alphabet concatenation is obviously commutative.
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Definition 2.14. The n™ (concatenation) power of the word w is

xX=¢
X'=xx"'=xx..x.
n copies

Definition 2.9. Nearly every characterization problem is algorithmically decidable for regular

languages. The most common ones are the following (where L or L, and L, are given regular

languages):

Emptiness Problem: Is the language L empty (i.e., does it equal ©)?
It is fairly easy to check for a given finite automaton recognizing L, whether or not
there is a state transition chain from an initial state to a terminal state.

Inclusion Problem: Is the language L, included in the language L,?

Clearly L, € L,ifand only if L, — L, = 2.

Equivalence Problem: 1s L, = L,?
Clearly L,=L,ifandonlyif L, & L,and L, & L,.

Finiteness Problem: Is L a finite language?
It is fairly easy to check for a given finite automaton recognizing L, whether or not it
has arbitrarily long state transition chains from an initial state to a terminal state.

Membership Problem: s the given word w in the language L or not?
Using a given finite automaton recognizing L it is easy to check whether or not it
accepts the given input word w.

Definition 2.20. For any alphabet X, a language over X is a set of strings over X. The

members of a language are also called the words of the language.

Definition 2.30. A grammar is a quadruple (%, V, S, P), where:

UN

1.

Y is a finite nonempty set called the terminal alphabet. The elements of X are called
the terminals.

2. V is a finite nonempty set disjoint from X. The elements of V' are called the

nonterminals or variables.

3. S € Vis adistinguished nonterminal called the start symbol.

4. P is a finite set of productions (or rules) of the form
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where o € CUNV(ZUPV) and B € (ZUV), ie. a is a string of terminals and
nonterminals containing at least one nonterminal and B is a string of terminals and
nonterminals.

Definition 2.31 Let G = (%, V, S, P) be a grammar, and let y, , v, be two sentential forms of G.
We say that y, directly derives vy, , writteny, = v, ,ify, =cot,y,=cft,anda — Pisa
production in P .

Definition 2.35. Let y, and vy, be two sentential forms of a grammar G. We say that y, derives
Y,, written y, =" vy,, if there exists a sequence of (zero or more) sentential forms 6, ... , ©
such that

n
V1=0,= ... 206,27,
The sequence y, = 6, = ... = ¢, = 7, is called a derivation of y, from vy,.

Definition 2.37. Let G = (%, V, S, P) be a grammar. A sentential form of G is any string of
terminals and nonterminals, i.e. a string over £ U V.

Definition 2.39. Let G =(Z, V, S, P) be a grammar. The language generated by G, denoted by
L(G), is defined as
L(G)= {x|x € ¥, § =" x}.

The words in L(G) are also called the sentences of L(G).

Let G=(%, V, S, P) be a grammar.

Chomsky’s Hierarchy - In Chomsky’s hierarchy grammars are divided into four types:

- Type 0: No restrictions.

- Type 1: CS grammars.

- Type 2: CF grammars.

- Type 3: Linear grammars having productions of the form X—wX; or X—w where X;
and X; are nonterminals and w € Y7, the so-called right-linear grammars.

Grammars of Types 1 and 2 generate the so-called CS-languages and CF-languages,
respectively, the corresponding families of languages are denoted by CS and CF. Languages
generated by Type 0 grammars are called computably enumerable languages (CE-languages),
the corresponding family is denoted by CE.

Definition 2.58. G is also called a Type-0 grammar or an unrestricted grammar.
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Definition 2.59. G is a Type-1 or context-sensitive grammar if each production o—f in P
satisfies |o| < |B|. By “special dispensation,” we also allow a Type-1 grammar to have the
production S—e¢, provided S does not appear on the right-hand side of any production.

Definition 2.60. G is a Type-2 or context-free grammar if each production o—f in P satisfies
la| = 1; i.e., a is a single nonterminal.

Definition 2.61. G is a Type-3 or right-linear or regular grammar if each production has one
of the following two forms:

A—cB

A—c
where 4, B are nonterminals (with B = 4 allowed) and c is a terminal.

Definition 2.78. Let L, and L, be two languages over X. The concatenation of L, and L,,
denoted by L,L, , is the language {xylx € L,,y € L, }.

Definition 2.82. Let L be a language over X. Define L, = {&¢} and L' = LL"" for i > 1. The
Kleene closure of L, denoted by L*, is the language

L'=yLr.

>0

The positive closure of L, denoted by L*, is the language

L'=yL.
i>1

In other words, the Kleene closure of a language L consists of all strings that can be formed
by concatenating zero or more words from L. For example, if L = {0, 01}, then LL = {00,
001, 010, 0101}, and L* comprises all binary strings in which every 1 is preceded by a 0.
Note that concatenating zero words always gives the empty string, and that a string with no
Is in it still makes the condition on “every 1” true. L + has the meaning “concatenate one or
more words from L,” and satisfies the properties L* = L" U {g} and L" = LL" . Furthermore,
for any language L, L* always contains , and L + contains if and only if L does. Also note that
>* is in fact the Kleene closure of the alphabet ¥ when X is viewed as a language of words of
length 1, and X" is just the positive closure of X.

Closure of the types of languages

Closure properties are often useful in constructing new languages from existing languages,
and for proving many theoretical properties of languages and grammars. The closure
properties of the four types of languages in the Chomsky hierarchy are summarized below.
Proofs may be found in [Harrison, 1978], [Hopcroft and Ullman, 1979], or [Gurari, 1989];
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the closure of the CSLs under complementation is the famous Immerman-Szelepcsényi
theorem.

Theorem.

1. The class of Type-0 languages is closed under union, intersection, concatenation, and
Kleene closure, but not under complementation.

2. The class of context-free languages is closed under union, concatenation and Kleene
closure, but not under intersection or complementation.

3. The classes of context-sensitive and regular languages are closed under all of the five
operations.

For example, let L, = {0"1"2"|m = n}, L, = {0"1"2"|n = p}, and L, = {0"1"2”|m = n or n = p}.
Now L, is the concatenation of the context-free languages {0"1" |n > 0} and 2", so L' is
context-free. Similarly L? is context-free. Since L* = L' U L? | L* is context-free. However,
intersecting L' with L? gives the language {{0”1"2”|m = n = p}, which is not context-free.

Definition 2.11. A class of languages is said to be closed under a particular operation (such as
union, intersection, complementation, concatenation, or Kleene closure) if every application
of the operation on language(s) of the class yields a language of the class.
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Regular expressions

Definition 3.1. The regular expressions over an alphabet £ and the languages they represent

are defined inductively as follows.

1.
2.

4 lma
L

UNIVERSIDAD
DE LAGA

The symbol @ is a regular expression, and represents the empty language.

The symbol ¢ is a regular expression, and represents the language whose only member
is the empty string, namely {&}.

For each ¢ € X, c is a regular expression, and represents the language {c}, whose
only member is the string consisting of the single character c.

If » and s are regular expressions representing the languages R and S, then (r + s), (7s)
and (") are regular expressions that represent the languages R U S, RS, and R”,
respectively.
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Finite-state automata

Automata are used to recognize words of a language. An automaton then ”processes” a word
and, after finishing the processing, “decides” whether or not the word is the language.

An automaton is finite if it has a finite memory, i.e., the automaton may be thought to be in
one of its (finitely many) (memory)states. A finite deterministic automaton is defined
formally by giving its states, input symbols (the alphabet), the initial state, rules for the state
transition, and the criteria for accepting the input word.

Definition 4.1. A finite (deterministic) automaton (DFA) is a quintuple M = (Q, X, g, , 6, A)
where

- 0=1{909---» 9, } 1s a finite set of states, the elements of which are called states;

- X is the set input symbols (the alphabet of the language);

- g, 1s the initial state (g, € Q);

- 0 1s the (state) transition function which maps each pair (g,, @), where ¢, is a state, and
a is an input symbol, to exactly one next state g; : 6(¢,, a) = g; ;

- A is the so-called set of terminal states (4 & Q).

As its input the automaton M receives a word

w=a,...a

n

which it starts to read from the left. In the beginning M is in its initial state g, reading the first
symbol a 1 of w. The next state g, is then determined by the transition function:

q;,~ 3(q, > a)).

In general, if M is in state g, reading the symbol a,, its next state is 6(q;, a;) and it moves on to
read the next input symbol a,,, if any. If the final state of M after the last input symbol a n is
read is one of the terminal states (a state in 4), then M accepts w, otherwise it rejects w. In
particular, M accepts the empty input ¢ if the initial state g, is also a terminal state.

The language recognized by an automaton M is the set of the words accepted by the
automaton, denoted by L(M).

Any word w = q, ... a, , be it an input or not, determines a so-called state transition chain of
the automaton M from a state g,, to a state g, :

qj()’q_/l 5t >q/'na
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where always g, = 8(g;, , @;.,)-

Any finite automaton can be represented graphically as a so-called state diagram. A state is
then represented by a circle enclosing the symbol of the state, and in particular a terminal
state is represented by a double circle:

OO

A state transition (g, a) = g, is represented by an arrow labelled by a, and in particular the
initial state is indicated by an incoming arrow:

(——~(») ~()
Such a representation is in fact an edge-labelled directed graph.

Example. The automaton {4, B, 10}, {0, 1}, A, 6, {10} where 6 is given by the state
transition table

)
A
B

N A =
W W W~

1

=

is represented by the state transition diagram

e

The language recognized by the automaton is the regular language (0+1)*10.

0

Definition 4.21. Defined formally a nondeterministic finite automaton (NFA) is a quintuple
M= (0, 2, S, o, A) where:
e () 2 and A are as for the deterministic finite automaton;
e Sis the set of initial states;
e § is the (state) transition function which maps each pair (g, a), where qi is a state and
a 1s an input symbol, to exactly one subset T of the state set Q: 8(g, , a) = T.
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Definition 4.34. M accepts a word w if there is at least one terminal state in the set of states
6"(S, w). A is accepted if there is at least one terminal state in S. The set of exactly all words
accepted by M is the language L(M) recognized by M.

Definition 4.36. The nondeterministic finite automaton may be thought of as a generalization
of the deterministic finite automaton, obtained by identifying in the latter each state g, by the
corresponding singleton set {q,}. It is however no more powerful in recognition ability.

Proof. Consider a language L recognized by the nondeterministic finite automaton M = (Q, 2,
S, 0, A). The equivalent deterministic finite automaton is then M, = (Q,, 2, q,, J,, A,) where
0,=2°,9,=58,0,=9,

and A4, consists of exactly all sets of states having a nonempty intersection with 4. The states
of M, are thus all sets of states of M. We clearly have §;(g,, w) = 6*(S, w), so M and M,
accept exactly the same words, and M, recognizes the language L.
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Regularity conditions

Definition 5.1. The language L separates the words w and v if there exists a word u such that
one of the words wu and vu is in L and the other one is not. If L does not separate the words w
and v, then the words wu and vu are always either both in L or both in L, depending on u.
There is a connection between the separation power of a language recognized by a finite
automaton and the structure of the automaton:

Theorem. If the finite automaton M = (Q, 2, q,, 0, A) recognizes the language L, and for the
words w and v it verifies 6"(g,, w) = (g, v), then L does not separate w and v.

Proof. As is easily seen, in general

0'(g; , xy) = 6'(0°(q;, x), y)-

So
5(qy, wu) =0"(0"(qy, w), u) = 0°(9°(qy v), u) =0"(q,, vit)

Definition 5.6. If the language L can be recognized by a finite automaton with # states, x € L
and |x| > n, then x can be written in the form x = uvw where |uv| <n, v # A and the ”"pumped”
words uv™w are all in L.

Myhill-Nerode Theorem - A language is regular if and only if it has a finite index.

If a regular language L is defined by a deterministic finite automaton M = (Q, 2, ¢q,, J, 4)
recognizing it, then the minimization naturally starts from M. The first step is to remove all
idle states of M, i.e., states that cannot be reached from the initial state. After this we may
assume that all states of M can expressed as d"(g,, w) for some word w. For the minimization
the states of M are partitioned into M-equivalence classes as follows. The states g; and g; are
not M-equivalent if there is a word u such that one of the states d*(g, , ) and d*(g; , w) is
terminal and the other one is not, denoted by g, = M g, . If there is no such word u, then g, and
q; are M-equivalent, denoted by g, =,, ¢, We may obviously assume g, =, g, . Furthermore, if
q; =y g, » then also g, =, ¢, , and if g, =, g, and g; =, q, it follows that ¢, =,, ¢,. Each
equivalence class consists of mutually M-equivalent states, and the classes are disjoint. (Cf.
the L-equivalence classes and the equivalence relation = L.) Let us denote the M-equivalence
class represented by the state g, by {g,}. Note that it does not matter which of the
M-equivalent states is chosen as the representative of the class. Let us then denote the set of
all M-equivalence classes by Q.

M-equivalence and L-equivalence are related since {J5*(g, w)) = {5%(q, v)) if and only if
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[w] = [v]. Because now all states can be reached from the initial state, there are as many
M-equivalence classes as there are L-equivalence classes, i.e., the number given by the index
of L. Moreover, M-equivalence classes and L-equivalence classes are in a one-to-one
correspondence:

(5" (g W) = [wl,

in particular {q,> = [4].
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